[1]周勇[],肖冰[]. 基于OMP算法的超声图像重建特性研究[J].计算机技术与发展,2017,27(07):135-139.
 ZHOU Yong[],XIAO Bing[]. Investigation on Ultrasound Image Reconstruction Characteristics with OMP Algorithm[J].,2017,27(07):135-139.
点击复制

 基于OMP算法的超声图像重建特性研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
135-139
栏目:
应用开发研究
出版日期:
2017-07-10

文章信息/Info

Title:
 Investigation on Ultrasound Image Reconstruction Characteristics with OMP Algorithm
文章编号:
1673-629X(2017)07-0135-05
作者:
 周勇[1]肖冰[2]
 1.西北政法大学 信息网络中心;2.陕西师范大学 计算机科学学院
Author(s):
 ZHOU Yong[1]XIAO Bing[2]
关键词:
 正交匹配追踪超声图像压缩感知图像重建
Keywords:
 OMPultrasound imagecompressed sensingimage reconstruction
分类号:
TP39
文献标志码:
A
摘要:
 为了获得研究对象内部结构更多的信息,需要采用超声射频信号,因此超声信号包络成像的应用十分广泛.但超声图像的采样过程耗时长,数据存储量大,在实际应用中会出现诸多问题.根据压缩传感理论,对原始信号或原始图像采集较少的采样信息,也可较逼真地恢复原始信号或者原始图像.为解决稀疏信号求解过程中所涉及的凸问题,提出了基于压缩感知理论及OMP的超声图像重建算法.该算法基于超声图像的稀疏特性,研究超声测量值、迭代次数及量化步长对超声图像重建质量的影响.理论分析与实验结果表明,所提出的超声图像重建算法是有效的.在不同的测量矩阵下,随着测量值的逐渐增加,重建图像的质量改善明显;当迭代次数增加,且量化步长合适,则重建图像的峰值信噪比(PSNR)越高,重建图像的质量也越好.
Abstract:
 To acquire much information of internal structure of research object,the ultrasonic RF signal is used,so the ultrasonic signal envelope imaging technology has wide application.However,there are some inconvenience in the application because of its large data storage and high time consuming in sampling.According to the compressed sampling theorem,the original signal or image could be more realistic to reconstruct by acquisition of fewer sampling data.In order to solve the convex problems involved in the process of sparse signal solving,an algorithm of ultrasonic image reconstruction based on CS theory and OMP algorithm has been proposed,which considers the effects of the measured value,the number of iterations and the quantization step size on the quality of ultrasound image reconstruction based on compressing sensing theorem.Theoretical analysis and experimental results show that the proposed algorithm for ultrasound image reconstruction is effective.Under the conditions of various measurement matrices,the quality of the reconstructed image is better with the gradual increase of the measured value,and when the number of iterations is increased and the quantization step is appropriate,the PSNR of the reconstructed image is higher,the quality of it is greater.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.
[11]荣雁霞,邱晓晖. 基于小波变换的分块压缩感知算法[J].计算机技术与发展,2015,25(05):29.
 RONG Yan-xia,QIU Xiao-hui. Image Blocking Compressed Sensing Algorithm Based on Wavelet Transform[J].,2015,25(07):29.

更新日期/Last Update: 2017-08-23