[1]单玉刚,汪家宝,郝峰. 基于自适应阈值的Surendra背景提取方法研究[J].计算机技术与发展,2017,27(07):91-95.
 SHAN Yu-gang,WANG Jia-bao,HAO Feng. Research on Surendra Background Extraction Method Based on Adaptive Threshold[J].,2017,27(07):91-95.
点击复制

 基于自适应阈值的Surendra背景提取方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
91-95
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 Research on Surendra Background Extraction Method Based on Adaptive Threshold
文章编号:
1673-629X(2017)07-0091-05
作者:
 单玉刚汪家宝郝峰
 湖北文理学院 教育学院
Author(s):
 SHAN Yu-gangWANG Jia-baoHAO Feng
关键词:
 自适应阈值Surendra背景提取切比雪夫不等式模糊OTSU
Keywords:
 adaptive thresholdSurendra background extractionChebyshev inequalityfuzzy OTSU
分类号:
TP391.41
文献标志码:
A
摘要:
 针对使用OTSU算法分割的Surendra背景提取算法实时性和精度的不足,在分析差分图像特征和阈值对图像分割影响的基础上,提出了一种自适应阈值的图像分割和背景提取及更新算法.通过采用切比雪夫不等式确定阈值可选范围,引入模糊隶属度改进基于灰度直方图的最大类间方差法,寻找区域最优分割阈值,准确分割出差分图像背景和目标.背景更新时,利用相邻帧差和自适应阈值法得到当前帧的二值图像,再根据前景目标更新得到新的背景,并适应光照强度的变化和场景变化.仿真实验结果表明,所提出的自适应阈值差分图像分割算法要优于OTSU算法的图像分割算法,应用在Surendra中,提取的背景精度高,效果好,可快速有效地对背景进行更新,并显著降低动态背景更新模型的计算量.
Abstract:
 In view of the problem of real-time and accuracy in Surendra background extraction algorithm by using OTSU,based on the analysis of the features of the differential image and the effect of threshold on the image segmentation,an adaptive threshold algorithm for extraction and update of background has been presented.For a series of frames in video,the threshold range by using Chebyshev inequality has been determined in which the final threshold could be acquired according to the gray histogram OTSU method based on fuzzy membership.During background updating,two adjacent frame difference and adaptive threshold method has been adopted to generate the binary image of the current frame and then the new background by considering the moving foreground targets in the frame and has been adapted to highlight intensity changes and scene changes.The experiment results show that the adaptive threshold algorithm for Surendra background extraction is better than the OTSU algorithm,which is applied to the Surendra and can update the background quickly and effectively,and has reduced the cost of computing of dynamic background update model significantly.

相似文献/References:

[1]陈小芬 李翠华 杜晓凤.自适应阈值的舌象裂纹检测[J].计算机技术与发展,2009,(01):17.
 CHEN Xiao-fen,LI Cui-hua,DU Xiao-feng.Detection of Tongue's Crack Based on Adaptive Threshold[J].,2009,(07):17.
[2]李丹霞 韦玉科.基于自适应阈值的舌像分割方法[J].计算机技术与发展,2011,(09):63.
 LI Dan-xia,WEI Yu-ke.Tongue Image Segmentation Method Based on Adaptive Thresholds[J].,2011,(07):63.
[3]李晨 王军锋.一种新的提升小波自适应阈值图像去噪算法[J].计算机技术与发展,2012,(07):78.
 LI Chen,WANG Jun-feng.A New Adaptive Threshold Algorithm of Image Denoising Based on Lifting Wavelet Transform[J].,2012,(07):78.
[4]汪翔 罗斌 翟素兰[] 涂铮铮.基于颜色空间的自适应阈值镜头分割算法[J].计算机技术与发展,2012,(09):37.
 WANG Xiang,LUO Bin,ZHAI Su-lan,et al.Self-threshold Shot Segmentation Based on Color Space[J].,2012,(07):37.
[5]于笃发,邵建华,张晶如.基于小波自适应阈值图像去噪方法的研究[J].计算机技术与发展,2013,(08):250.
 YU Du-fa,SHAO Jian-hua,ZHANG Jing-ru.Research on Image Denoising Based on Wavelet Adaptive Threshold[J].,2013,(07):250.
[6]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[7]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[8]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[9]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[10]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[11]徐钧,周西峰,郭前岗. 超声信号的小波增强与改进去噪研究[J].计算机技术与发展,2015,25(02):82.
 XU Jun,ZHOU Xi-feng,GUO Qian-gang. Research on Improved De-noising and Wavelet Enhancement of Ultrasonic Signal[J].,2015,25(07):82.
[12]张心言,赵冉阳. 基于Canny的自适应边缘检测算法及性能评估[J].计算机技术与发展,2015,25(11):32.
 ZHANG Xin-yan,ZHAO Ran-yang. An Adaptive Edge-detection Algorithm Based on Canny and Its Performance Evaluation[J].,2015,25(07):32.
[13]白小叶[],程勇[],曹雪虹[][]. 基于光照归一化分块自适应LTP特征的人脸识别[J].计算机技术与发展,2016,26(05):56.
 BAI Xiao-ye[],CHENG Yong[],CAO Xue-hong[]. Face Recognition Based on Illumination Normalization and Block-based Adaptive Local Ternary Pattern[J].,2016,26(07):56.

更新日期/Last Update: 2017-08-22