[1]徐骏,吴敏,沙超,等. 基于移动信标的响应式传感网定位方法[J].计算机技术与发展,2017,27(06):199-204.
 XU Jun,WU Min,SHA Chao,et al. A Mobile-beacon Based Localization Algorithm in ResponsiveSensor Networks[J].,2017,27(06):199-204.
点击复制

 基于移动信标的响应式传感网定位方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
199-204
栏目:
应用开发研究
出版日期:
2017-06-10

文章信息/Info

Title:
 A Mobile-beacon Based Localization Algorithm in ResponsiveSensor Networks
文章编号:
1673-629X(2017)06-0199-06
作者:
 徐骏吴敏沙超倪凯悦王汝传
 南京邮电大学 计算机学院、软件学院,
Author(s):
 XU JunWU MinSHA ChaoNI Kai-yueWANG Ru-chuan
关键词:
 蜂窝模型协作遍历移动信标RSSI
Keywords:
 Hexagon-based modelvisiting with corporationmobile beaconRSSI
分类号:
TP31
文献标志码:
A
摘要:
 相对于静态锚节点定位算法而言,基于移动锚节点的定位机制能较好地提升定位的准确性.由于受到移动性的限制,某些静态锚节点定位时会出现误差过大的情况.为此,提出了基于蜂窝模型的移动定位算法.该算法应用中心锚节点和边缘锚节点协作遍历模型的中心和边缘位置,可快速定位覆盖区域的未知节点,且能去除移动规划设计中的冗余路径,避免了同一路径的冗余重复访问,有助于保证锚节点移动的高效性和准确性.该算法通常从捕获的三个锚节点信息筛选出RSSI信号强度较大的两个,以避免引入误差过大的距离值,根据信号强度的衰减模型求解可以得到两个位置信息,并由第三个距离信息作为判断条件,唯一确定未知节点的坐标信息.仿真结果表明,所提出的定位算法定位精度较好且定位的时间效率较高.
Abstract:
 Compared with static anchor localization scheme,the localization algorithm based on multi-mobile anchor can improve the accuracy of the localization greatly.Due to restriction of the mobility,it can lead to the large error of location for the unknown nodes.The mobile-anchor localization proposed is on the basis of Hexagon-based model,where the central and the border anchors are applied to visit the relevant positions with corporation,and it can get the position information of the unknown nodes in shorter time.Besides,the design of the mobile planning can get rid of the redundant path and improve the accuracy and efficiency.Picking out of two with larger strength from the three messages and it can remove the result with larger error.Then from two messages,the two results of the position of the unknown node can be obtained.And according to the three messages,the only final result can be gotten.The algorithm of RSSI is improved and can get better accuracy of localization.Simulation results show that the proposed measure has the better accuracy of the localization and higher rate of efficiency.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2017-07-28