[1]李强[],陈光化[],余渊[]. 基于随机游走和混合高斯模型的运动目标检测[J].计算机技术与发展,2017,27(06):11-16.
 LI Qiang[],CHEN Guang-hua[],YU Yuan[]. Moving Target Detection Based on Random Walk and GaussianMixture Model[J].,2017,27(06):11-16.
点击复制

 基于随机游走和混合高斯模型的运动目标检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
11-16
栏目:
智能、算法、系统工程
出版日期:
2017-06-10

文章信息/Info

Title:
 Moving Target Detection Based on Random Walk and GaussianMixture Model
文章编号:
1673-629X(2017)06-0011-06
作者:
 李强[1]陈光化[1]余渊[2]
 1.上海大学 机电工程与自动化学院;2.上海电器科学研究所(集团)有限公司
Author(s):
 LI Qiang[1]CHEN Guang-hua[1]YU Yuan[2]
关键词:
 混合高斯模型随机游走运动目标检测种子点
Keywords:
 mixed Gauss modelrandom walkmoving target detectionseed points
分类号:
TP301.6
文献标志码:
A
摘要:
 针对传统的混合高斯背景建模算法未考虑同一帧内相邻像素之间的联系而导致无法准确地捕捉到运动物体轮廓的问题,提出了一种将随机游走和混合高斯模型相结合的前景目标检测算法.该算法利用混合高斯模型对视频源图像进行背景建模,从而获得初始运动目标,应用随机游走算法的分割效果及处理时间来确定种子点数量,结合初始运动目标对种子点进行标记,采用随机游走算法对视频源图像进行分割,将所得到的分割目标再与初始运动目标进行"与"运算,通过形态学处理得到作为结果的运动目标.为验证所提出算法的有效性,基于Matlab对所选取的4段视频进行了仿真检测.验证实验结果表明,所提出的前景目标检测算法较好地解决了混合高斯算法所产生的边缘模糊问题,同时也明显降低了前景噪声.
Abstract:
 Since the conventional Gaussian mixture background modeling algorithm does not consider the correlation between adjacent pixels in the same frame,which cannot accurately capture the contour of moving objects,a foreground target detection method combined with random walk and Gaussian mixture model has been proposed.The background of the video source image has been modeled with the mixed Gauss model firstly,and the initial moving object has been obtained.Then,the number of seed points is determined by analyzing the segmentation result and the processing time of the random walk algorithm.The seed points have been labeled with the initial moving object,and the video source image is segmented by random walk algorithm.The obtained segmentation target and the initial moving object have been computed with logic AND operation.The morphological processing has been carried out to get the final moving target.In order to verify the effectiveness of the proposed algorithm, the four selected sequences of videos have been tested by Matlab.The test results show that the proposed method has solved the edge blurring problem of Gaussian mixture algorithm,and reduced the foreground noise.

相似文献/References:

[1]李亚玲 徐荣青 聂桂军 田俊青 姚晓宇.适应场景光照变化的运动目标检测算法[J].计算机技术与发展,2011,(02):140.
 LI Ya-ling,XU Rong-qing,NIE Gui-jun,et al.Moving Object Detection Method for Change in Scene Light[J].,2011,(06):140.
[2]杨宁 杨敏.基于改进的混合高斯模型的运动目标提取[J].计算机技术与发展,2012,(07):20.
 YANG Ning,YANG Min.Moving Object Extraction Based on Improved Gaussian Mixture Model[J].,2012,(06):20.
[3]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(06):60.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[11]冯璞,李玉恵,李勃,等. 基于纹理特征的混合高斯背景建模算法研究[J].计算机技术与发展,2016,26(05):22.
 FENG Pu,LI Yu-hui,LI Bo,et al. Research on Gaussian Mixture Background Modeling Algorithm Based on Texture Feature[J].,2016,26(06):22.
[12]丁晓娜. 基于Gaussian模型及Kalman滤波的车辆跟踪方法[J].计算机技术与发展,2016,26(05):165.
 DING Xiao-na. Research on Vehicle Tracking Based on Gaussian Model and Kalman Filter[J].,2016,26(06):165.

更新日期/Last Update: 2017-07-20