[1]戴越越[],曹雪情[],陈瑞[],等. 基于分类加权边信息的DVCS重建算法[J].计算机技术与发展,2017,27(05):87-91.
 DAI Yue-yue[],CAO Xue-qing[],CHEN Rui[],et al. Reconstruction Algorithm with Classified Weighted Side Information forDistributed Video Compressive Sensing[J].,2017,27(05):87-91.
点击复制

 基于分类加权边信息的DVCS重建算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年05期
页码:
87-91
栏目:
智能、算法、系统工程
出版日期:
2017-05-10

文章信息/Info

Title:
 Reconstruction Algorithm with Classified Weighted Side Information forDistributed Video Compressive Sensing
文章编号:
1673-629X(2017)05-0087-05
作者:
 戴越越[1]曹雪情[1]陈瑞[2] 杨洁[2] 曹雪虹[2]
 1.南京邮电大学 通信与信息工程学院;2.南京工程学院 通信工程学院
Author(s):
 DAI Yue-yue[1]CAO Xue-qing[1]CHEN Rui[2]YANG Jie[2]CAO Xue-hong[2]
关键词:
 边信息运动估计贝叶斯压缩感知小波树分布式视频编码
Keywords:
 side informationmotion estimationBayesian compressive sensingwavelet treedistributed video coding
分类号:
TP919.81
文献标志码:
A
摘要:
 现有的分块视频压缩感知在获取边信息时,通常对所有图像块均采用固定权值边信息合成方法,该方法忽略了不同图像块之间相关度不同的问题.针对这一问题,根据贝叶斯压缩感知和运动估计理论,提出了一种基于块的分类加权边信息生成方案的分布式视频解码方法.在解码端利用相邻关键帧中不同块的相关度差异,对相邻关键帧进行基于块的分类加权运动估计,生成边信息,进而完成非关键帧的重构.考虑到加权系数的大小取决于相邻关键帧对应块的相关度,所采用的重建算法是基于TSW-CS模型的贝叶斯压缩感知重构算法.分别采用固定权值边信息生成方法和分类加权边信息生成方法对不同视频序列进行了实验对比,实验结果表明,采用分类加权边信息方法生成的视频重建PSNR值比固定权值边信息生成方法平均提高了0.2~0.5 dB,所采用的解码方法可有效地提高视频压缩感知重构质量.
Abstract:
 For most of those existing block-based compressed sensing of video,the fixed weight side information generation method is usually utilized for all blocks,which underestimates the problem of the difference of correlation between different blocks.To address this issue,a classified weighted side information generation method with block for distributed video decoding has been proposed according to the Bayesian compressive sensing and motion estimation theory.In the decoding side,the different correlations of neighboring key-frames has been used to generate side information by taking classified weighted motion estimation with block to different block of key-frame,then the reconstruction of the non-key-frame is completed.Considering that weighting coefficient depends on the size of the adjacent frames relevance,the Bayesian compressive sensing reconstruction algorithm is adopted based on TSW-CS model.Fixed weight side information generation method and the proposed method are used in experiments for comparison with various video sequences.The experimental results show that the PSNR of reconstructed video of proposed side information generation method has been averagely improved 0.2~0.5 dB,higher than fixed weight method.The restructure quality of video compression sensing has been effectively improved by proposed algorithm.

相似文献/References:

[1]陈富春 周鸣争.分布式信源编码在视频编码中的应用研究[J].计算机技术与发展,2012,(01):198.
 CHEN Fu-chun,ZHOU Ming-zheng.Application and Research of Distributed Video Coding Based on Distributed Source Coding[J].,2012,(05):198.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[11]王艳营,冯进玫,张文祥. 大GOP下基于混合更新的边信息生成算法[J].计算机技术与发展,2017,27(04):55.
 WANG Yan-ying,FENG Jin-mei,ZHANG Wen-xiang. A Side Information Generation Algorithm with Hybrid Updating in Large GOP[J].,2017,27(05):55.

更新日期/Last Update: 2017-07-07