[1]蒋宗礼,王威,陆晨. 基于均值预估的协同过滤推荐算法改进[J].计算机技术与发展,2017,27(05):1-5.
 JIANG Zong-li,WANG Wei,LU Chen. 基于均值预估的协同过滤推荐算法改进[J].,2017,27(05):1-5.
点击复制

 基于均值预估的协同过滤推荐算法改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年05期
页码:
1-5
栏目:
智能、算法、系统工程
出版日期:
2017-05-10

文章信息/Info

Title:
 基于均值预估的协同过滤推荐算法改进
文章编号:
1673-629X(2017)05-0001-05
作者:
 蒋宗礼王威陆晨
 北京工业大学 计算机学院
Author(s):
 JIANG Zong-liWANG WeiLU Chen
关键词:
 协同过滤推荐算法稀疏性评分预测均方根误差
Keywords:
 collaborative filteringrecommendation algorithmsparsityrating predictionRMSE
分类号:
TP301.6
文献标志码:
A
摘要:
 在协同过滤推荐系统中,用户-项目矩阵中存在大量未评分元素,且最终预测值由"最近邻"用户所评分数的加权平均产生.传统算法将未评分元素直接计作0,导致预测得分普遍偏低.针对这种稀疏性引起的问题,提出了一种基于均值预估的协同过滤改进算法.该算法以"最近邻"用户所给平均值对未评分的数据进行估计,有效降低了未评分项目所带来的负面影响.同时该方法又不是单纯的平均值填充,而是在协同过滤算法的第三阶段,需要用到"最近邻"用户对预测项目的评分时,才对"最近邻"评分为0的分值进行替代,这样不会影响到计算的相似度,预测结果不至于平庸.稀疏度为93.7%的数据上的实验表明,在不影响相似度计算的前提下,改进算法可显著降低均方根误差,提高推荐质量;最佳RMSE值可达1.01.
Abstract:
 There are a lot of unrated elements in the user-item matrix in collaborative filtering recommendation system,and final prediction value is calculated by the weighted average of nearest-neighbor scores.The values of unrated elements are regarded as 0 by traditional methods,which results in a generally low prediction score for the unrated elements.In order to solve the problem caused by sparsity,an improved collaborative filtering recommendation algorithm with mean value estimation is proposed.The average score of the nearest-neighbor scores are employed to evaluate the unrated data,effective reduction of negative influence of unrated items in this algorithm.At the same time,this method is not a simple average filling,but in the third stage of collaborative filtering algorithm,when needing to use nearest-neighbor users to predict,the 0 score is replaced.This won’t affect the calculation of similarity,and predicted results not mediocrity.The experiment results with 93.7% sparse degree show that the recommendation quality can be improved and that the best RMSE value,1.01,has been reached.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(05):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(05):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(05):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(05):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(05):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(05):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(05):73.
[8]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(05):116.
[9]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(05):66.
[10]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[11]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(05):59.
[12]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(05):42.
[13]陈彦萍,王赛. 基于用户-项目的混合协同过滤算法[J].计算机技术与发展,2014,24(12):88.
 CHEN Yan-ping,WANG Sai. A Hybrid Collaborative Filtering Algorithm Based on User-item[J].,2014,24(05):88.
[14]王全民,苗雨,何明,等. 基于矩阵分解的协同过滤算法的并行化研究[J].计算机技术与发展,2015,25(02):55.
 ANG Quan-min,MIAO Yu,HE Ming,et al. Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization[J].,2015,25(05):55.
[15]程高伟,丁亦喆,吴振强. 结合用户评分和项目标签的协同过滤算法[J].计算机技术与发展,2015,25(03):71.
 CHENG Gao-wei,DING Yi-zhe,WU Zhen-qiang. Collaborative Filtering Algorithm Combined User Ratings with Item Tags[J].,2015,25(05):71.
[16]张晓琳,付英姿,褚培肖. 杰卡德相似系数在推荐系统中的应用[J].计算机技术与发展,2015,25(04):158.
 ZHANG Xiao-lin,FU Ying-zi,CHU Pei-xiao. Application of Jaccard Similarity Coefficient in Recommender System[J].,2015,25(05):158.
[17]查九,李振博,徐桂琼. 基于用户近邻约束的矩阵因子分解算法[J].计算机技术与发展,2015,25(06):1.
 ZHA Jiu,LI Zhen-bo,XU Gui-qiong. A Matrix Factorization Algorithm Based on User’ s Neighbors Regularized[J].,2015,25(05):1.
[18]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(05):129.
[19]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(05):24.
[20]葛林涛,徐桂琼. 基于模糊C均值聚类有效性的协同过滤算法[J].计算机技术与发展,2016,26(01):22.
 E Lin-tao,XU Gui-qiong. A Collaborative Filtering Algorithm Based on Fuzzy C-means Clustering Validity[J].,2016,26(05):22.

更新日期/Last Update: 2017-07-06