[1]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6-11.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(04):6-11.
点击复制

 基于网络博弈论的谣言扩散建模研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年04期
页码:
6-11
栏目:
智能、算法、系统工程
出版日期:
2017-04-10

文章信息/Info

Title:
 Investigation on Rumor Diffusion Modeling with Network Game Theory
文章编号:
1673-629X(2017)04-0006-06
作者:
 余莎莎[1] 王友国[1] 朱亮[2]
1. 南京邮电大学 理学院;2.南京邮电大学 通信与信息工程学院
Author(s):
 YU Sha-sha[1] WANG You-guo[1] ZHU Liang[2]
关键词:
 社交网络博弈论谣言扩散行为决策
Keywords:
 online social networkgame theoryrumors diffusionbehavioral decision making
分类号:
TP39
文献标志码:
A
摘要:
 随着网络技术的不断发展,在线社交网络已经成为大众交互观点,抒发意见的主流平台.通过建立谣言扩散模型,研究社交网络中的谣言传播机制,为控制谣言传播提供指导和帮助.社交网络中,用户行为决策受其自身利益影响,因此,结合网络博弈论,给出用户在社交网络中选择传播谣言或不传播谣言的概率表达式.在此基础上,分析谣言在社交网络中的传播过程,结合用户可随时改变自身决策的行为特点,建立谣言扩散模型.并分别基于无标度网络和小世界网络,进行数值仿真,分析用户决策转换比例对谣言扩散的影响.实验结果表明,用户决策转换比例中的固有影响因子与时间速率因子对谣言在网络中的扩散具有显著影响,随着决策转换比例的减小,谣言扩散速率与最终扩散规模将出现不同程度的减小.同时,当风险主导程度足够小时,无论其如何变化,谣言必定扩散至整个网络,相反地,对于足够大的风险主导程度,谣言将无法在网络中传播.
Abstract:
 With the continual development of network technology,the online social network has become an important platform for people to express views and interact with each other.In view of this,a rumor diffusion model has been formulated and the rumor dissemination mechanism has been studied to give guidance and help to control the spread of rumors.Human behave in online social network,having an inclination to spread information so as to gain reputation or money etc.Therefore,a probability of an individual’s choice of spreading rumors or not has been proposed on the basis of game theory.The processes of rumor diffusion and the behavior characteristics have been taken into consideration to establish a rumor diffusion model in online social networks.Simulations on both scale-free network and small-world network have been conducted to investigate the impact of rate at which an individual revises his action on rumor diffusion.Its results indicate that small rate at which an individual revises his action on rumor diffusion can cut down the diffusion of gossip in varying degrees and that when the degree of risk dominance is small enough,the rumors would be spread to the entire network,no matter how it changes.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.
[11]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(04):6.
[12]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(04):152.
[13]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(04):31.
[14]余莎莎[],王友国[],朱亮[]. 基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Research on Online Business Rumors Transmission Based on an Improved SIR Model[J].,2016,26(04):195.
[15]付明明,余莎莎,应志领. 在线社交网络的双谣言模型研究[J].计算机技术与发展,2017,27(09):53.
 FU Ming-ming,YU Sha-sha,YING Zhi-ling. Research on Double Rumor Model in Online Social Network[J].,2017,27(04):53.
[16]李旗旗,徐敏. 社交网络中的链路预测方法改进[J].计算机技术与发展,2017,27(11):37.
 LI Qi-qi,XU Min. Improvement of Link Prediction Method in Social Networks[J].,2017,27(04):37.

更新日期/Last Update: 2017-06-09