[1]耿曼[][],钱国明[],王宇[]. 虚拟试衣系统服装图像匹配算法研究[J].计算机技术与发展,2017,27(01):126-129.
 GENG Man[] [],QIAN Guo-ming[],WANG Yu[]. Research on Clothing Image Matching of Virtual Fitting Room[J].,2017,27(01):126-129.
点击复制

 虚拟试衣系统服装图像匹配算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
126-129
栏目:
应用开发研究
出版日期:
2017-01-10

文章信息/Info

Title:
 Research on Clothing Image Matching of Virtual Fitting Room
文章编号:
1673-629X(2017)01-0126-04
作者:
 耿曼[1][2] 钱国明[1] 王宇[2]
 1.南京邮电大学;2. 中国科学院 上海高等研究院
Author(s):
 GENG Man[1] [2]QIAN Guo-ming[1] WANG Yu[2]
关键词:
 虚拟试衣系统服装转移算法Kinect
Keywords:
 virtual fitting systemclothing transfer algorithmKinect
分类号:
TP301.6
文献标志码:
A
摘要:
 在目前虚拟试衣系统的研究中,服装图像的获取和处理一直是一个关键的研究问题,同时如何根据人体姿态匹配正确的姿态服装图像也一直是虚拟试衣系统中实现实时试衣的关键问题。对前人研究的以轮廓信息作为服装匹配的关键字进行了改进,结合图像识别算法去识别和返回人体的24个关节点的三维坐标,将骨骼信息关节点坐标作为匹配的关键字进行服装图像的转移匹配,然后使用轮廓信息提取算法进行人体轮廓的获取,使后续的转移算法利用当前图像帧轮廓检索数据库,以进行服装图像信息匹配,获取与当前帧最接近的图像帧。实验结果表明,使用人体关节点信息作为服装图像匹配的关键字可以更加快速和准确地检索到要匹配的关键帧服装图像。
Abstract:
 At present,for virtual fitting room research,the acquisition and processing of clothing image has been a key research topics. At the same time,how to match the correct posture clothing image according to the human body posture has also been a key issue of realizing real-time fitting in virtual fitting system. The outline information as a clothing matching keywords of previous studies is improved,and 24 key points of 3d coordinates of human body are recognized and returned combined with image recognition algorithm,using the skeleton information as the matching key words to match clothing transfer image. The Kinect is also used to extract the human body contours,so that the subsequent transfer algorithm can use the current frame profile to retrieve database and match information,obtaining in touch with the current frame closest image frame. Experimental results show that the use of the human body joint point as matching keywords can be more fast and accurate retrieval to match the key frames of clothing image.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2017-04-01