[1]陈凡[],童莹[],曹雪虹[]. 复杂环境下基于视觉显著性的人脸目标检测[J].计算机技术与发展,2017,27(01):48-52.
 CHEN Fan[],TONG Ying[],CAO Xue-hong[]. Face Target Detection of Visual Saliency in Complex Environment[J].,2017,27(01):48-52.
点击复制

 复杂环境下基于视觉显著性的人脸目标检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
48-52
栏目:
智能、算法、系统工程
出版日期:
2017-01-10

文章信息/Info

Title:
 Face Target Detection of Visual Saliency in Complex Environment
文章编号:
1673-629X(2017)01-0048-05
作者:
 陈凡[1]童莹[2]曹雪虹[2]
 1.南京邮电大学 通信与信息工程学院;2.南京工程学院 通信工程学院
Author(s):
 CHEN Fan[1]TONG Ying[2]CAO Xue-hong[2]
关键词:
 复杂环境基于图论的视觉显著性算法视觉显著性人脸检测
Keywords:
 complex environmentGBVSvisual saliencyface detection
分类号:
TP273
文献标志码:
A
摘要:
 当前复杂环境下人脸识别因受目标背景杂乱等因素影响,分类效果不理想。针对此问题,提出了基于视觉显著性的人脸目标检测方法,利用基于图论的视觉显著性算法( Graph-Based Visual Saliency,GBVS)提取复杂环境中的人脸目标的显著图,对显著图进行阈值分割和形态学操作得到二值人脸目标区域,以区域质心为中心,以区域边缘到质心的最小距离为边长,截取图像中的准确人脸区域,实现复杂环境下的人脸目标检测。在LFW数据库上的实验结果表明,所提算法能够准确地完成“抠图”的任务,具有较为理想的人脸检测效果,因算法实现过程无需人工干预,可有效摒除杂乱背景干扰,且提高了检测速度,实现了无监督的人脸检测,为智能化人脸识别提供了理论研究基础。
Abstract:
 At present,the classification accuracy of face recognition in complex environment is not satisfied because of the background clutter and other factors. To solve this problem,a face detection algorithm based on visual saliency has been proposed,in which graph based visual salient algorithm is employed to extract salient maps of face region in complex environment and then threshold segmentation and morphological operations is run to get the binary face marks and the centroid is taken as center as well as the minimum distance of the region edge and centroid as side length to crop the accurate area of target face to achieve the goal of face detection in complex environ-ment. Results of experiments on the LFW image database show that the proposed algorithm can accurately fulfill“matting” tasks and a-chieve good results in face detection,the process of which needs no artificial participation,and can effectively exclude the interference of pell-mell background besides having improved the detection rate,realizing the unsupervised face detection,providing a theoretical foun-dation for intelligent research of face recognition.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(01):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(01):47.

更新日期/Last Update: 2017-04-01