[1]林青[],戴慧珺[],任德旺[]. 基于贝叶斯网络的量化信任评估方法[J].计算机技术与发展,2016,26(12):132-136.
 LIN Qing[],DAI Hui-jun[],REN De-wang[]. A Quantitative Trust Assessment Method Based on Bayesian Network[J].,2016,26(12):132-136.
点击复制

 基于贝叶斯网络的量化信任评估方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年12期
页码:
132-136
栏目:
安全与防范
出版日期:
2016-12-10

文章信息/Info

Title:
 A Quantitative Trust Assessment Method Based on Bayesian Network
文章编号:
1673-629X(2016)12-0132-05
作者:
 林青[1]戴慧珺[2]任德旺[2]
1.西安培华学院;2.西安交通大学
Author(s):
 LIN Qing[1]DAI Hui-jun[2]REN De-wang[2]
关键词:
 贝叶斯网络信任评估条件概率分配物联网
Keywords:
 Bayesian networktrust assessmentconditional probability allocationInternet of Thing
分类号:
TP309.2
文献标志码:
A
摘要:
 随着云计算的不断发展,物联网逐步涉及各行各业,其中包含大量的感知信息、个人或群体的隐私信息。此外,物联网最直接、最严峻的安全隐患是网络中参与信息采集与数据融合的恶意节点,以合法身份发送虚假信息、窃听发送指令等,所以保障物联网安全刻不容缓,尤其是确保节点之间的信任关系。为决定新节点是否可以加入网络,以及排除网络中已有的恶意节点,利用贝叶斯网络量化评估节点间的信任概率,通过节点信任状态分级,融合先验信任概率,分配信任条件概率,推理预测评估节点的信任概率,确定信任等级。通过仿真实验,结果证明了该评估方法的有效性,并在一定程度上降低了评估的主观性。
Abstract:
 With the continuous development of cloud computing,Internet of Things ( IoT) gradually involves in all walks of life,which contains large amounts of sensitive information,privacy information. In addition,the most direct and serious security risks are malicious nodes involving in information acquisition and data fusion,which send false information and eavesdrop instructions sent with legal identi-ty. Therefore,it is greatly urgent to ensure the security of IoT,especially trust relationship among nodes. In order to determine whether to allow the new node to join the network and to remove the existing malicious nodes,a quantitative trust assessment method is proposed based on Bayesian network. Through classification of trust status of nodes,integration of trust priori probability and allocation of condi-tional probability,the trust probability of assessment nodes could be predicted and inference to determine the trust level. The simulation re-sults show the effectiveness of assessment method and that the assessment subjectivity can be reduced to some extent.

相似文献/References:

[1]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(12):106.
[2]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(12):155.
[3]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(12):35.
[4]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(12):61.
[5]蒋望东 林士敏 鲁明羽[].基于BIC测度和混合遗传算法的BNC结构学习[J].计算机技术与发展,2007,(03):84.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of BNC Based on BIC and Hybrid Genetic Algorithms[J].,2007,(12):84.
[6]孙笑微 赵大宇 李晓毅 唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,(11):140.
 suN Xiao-wei,ZHAO Da-yu,LI Xiao-yi,et al.Study and Application of TAN Classifier for Data Mining[J].,2006,(12):140.
[7]钟仕群 朱程荣 熊齐邦.一种基于贝叶斯网络的集成的故障定位模型[J].计算机技术与发展,2006,(12):13.
 ZHONG Shi-qun,ZHU Cheng-rong,XIONG Qi-bang.An Integrated Fault Localization Model Based on Bayesian Networks[J].,2006,(12):13.
[8]潘晓东[] 王春江 黄镇鸿 张国辉[].作战重心建模中的条件概率生成方法研究[J].计算机技术与发展,2011,(04):56.
 PAN Xiao-dong,WANG Chun-jiang,HUANG Zhen-hong,et al.Research on Method of Generating Conditional Probabilities in COG Modeling[J].,2011,(12):56.
[9]洪海燕.基于贝叶斯分类器的简历筛选模型[J].计算机技术与发展,2012,(07):85.
 HONG Hai-yan.Screening of Resumes Based on Bayesian Classifier[J].,2012,(12):85.
[10]吴绍兵.基于贝叶斯网络的信息提取技术研究[J].计算机技术与发展,2012,(11):225.
 WU Shao-bing.Research of Information Extraction Technique Based on Bayesian Network[J].,2012,(12):225.
[11]崔鹏帅,朱浩洋,任浩. 基于分层模型的组合服务故障定位算法[J].计算机技术与发展,2014,24(09):6.
 CUI Peng-shuai,ZHU Hao-yang,REN Hao. A Fault Location Algorithm of Composition Service Based on Hierarchical Model[J].,2014,24(12):6.
[12]李正浩,刘学军. 一种基于贝叶斯网络的作战重心评估模型[J].计算机技术与发展,2014,24(09):50.
 LI Zheng-hao,LIU Xue-jun. An Evaluation Model of Center of Gravity Based on Bayesian Network[J].,2014,24(12):50.
[13]肖旭,慕德俊,张慧翔,等. GPU加速的贝叶斯网络精确推理方法研究[J].计算机技术与发展,2014,24(10):1.
 XIAO Xu,MU De-jun,ZHANG Hui-xiang,et al. Research on Bayesian Network’s Exact Inference Using GPU Acceleration[J].,2014,24(12):1.
[14]王巍. 基于云参数贝叶斯网络的威胁评估方法[J].计算机技术与发展,2016,26(06):106.
 WANG Wei. An Threat Assessment Method Based on Cloud Parameters Bayesian Network[J].,2016,26(12):106.
[15]刘栋,宁玉富. 事件关联在证据链构造中的研究[J].计算机技术与发展,2016,26(12):107.
 LIU Dong,NING Yu-fu. Research on Event Correlation in Construction of Evidence Chain[J].,2016,26(12):107.
[16]高晓利[],李捷[][]. 基于模糊变结构动态贝叶斯网的目标识别方法[J].计算机技术与发展,2017,27(09):17.
 GAO Xiao-li[],LI Jie[][]. A Target Identification Method of Dynamic Bayesian Network with Fuzzy Variable Structure[J].,2017,27(12):17.

更新日期/Last Update: 2017-02-03