[1]祁兰,毛燕琴,沈苏彬. 一种传感数据的压缩和高效存储方案[J].计算机技术与发展,2016,26(11):177-181.
 QI Lan,MAO Yan-qin,SHEN Su-bin. A Compressed and Efficient Storage Scheme of Sensor Network Data[J].,2016,26(11):177-181.
点击复制

 一种传感数据的压缩和高效存储方案()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
177-181
栏目:
应用开发研究
出版日期:
2016-11-10

文章信息/Info

Title:
 A Compressed and Efficient Storage Scheme of Sensor Network Data
文章编号:
1673-629X(2016)11-0177-05
作者:
 祁兰毛燕琴沈苏彬
 南京邮电大学 计算机学院 软件学院
Author(s):
 QI LanMAO Yan-qinSHEN Su-bin
关键词:
 传感数据云计算MongoDB压缩算法
Keywords:
 sensing datacloud computingMongoDBcompression algorithm
分类号:
TP392
文献标志码:
A
摘要:
 传感网络数据经旋转门压缩后是零散分布的,压缩后的数据直接在云中存储,将导致其难以统一管理和查询,集群为了负载均衡会频繁移动数据。 MongoDB数据库是一种新型的非关系数据库,其存储结构灵活,查询效率高,适合传感数据的存储和管理。通过研究MongoDB的存储特点和空间分配机制,利用云平台的计算能力,设计针对传感数据的压缩和高效存储方案。先将传感器压缩后的传感数据在云中使用最小二乘法拟合进行解压缩处理,得到时间粒度上的完整数据集,设计一种针对时域性传感数据的通用存储格式,将数据集存储到高性能的NoSQL数据库MongoDB中。实验结果表明,该方案可以更好地恢复有损压缩后的数据并提高数据的查询效率,体现了MongoDB灵活的存储模式在传感数据中应用的显著优势。
Abstract:
 Since compressed wireless sensor network data based on Swing Door Trending ( SDT) is scattered,unified management and query are difficult to handle,meanwhile the data would be moved frequently for the goal of loading balancing. MongoDB,as a new non-relational database,is famous for flexible storing configuration and high query efficiency,which is suitable for storage and management of sensor data. By studying the MongoDB storage features and space allocation mechanism,taking advantage of the ability to cloud com-puting platform,a compressed and efficient storage scheme of sensor network data is proposed. The sensing data compressed by sensors is decompressed in the cloud using the least squares fitting,getting the complete data set on time granularity,and a common storage format applies to the time domain senor data is designed to put the data into the MongoDB,a high-performance NoSQL database. Experimental results show that the scheme recoveries compressed data better and promotes the database query efficiency,and the flexible storage mode of MongoDB plays a significant advantage in sensing data applications.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2016-12-16