[1]周添杰,蒋国平. 基于节点最大剩余容量的负荷再分配策略研究[J].计算机技术与发展,2016,26(11):63-66.
 ZHOU Tian-jie,JIANG Guo-ping. Research on Load Redistribution Strategy Based on Maximum Remaining Capacity of Node[J].,2016,26(11):63-66.
点击复制

 基于节点最大剩余容量的负荷再分配策略研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
63-66
栏目:
智能、算法、系统工程
出版日期:
2016-11-10

文章信息/Info

Title:
 Research on Load Redistribution Strategy Based on Maximum Remaining Capacity of Node
文章编号:
1673-629X(2016)11-0063-04
作者:
 周添杰蒋国平
 南京邮电大学 自动化学院
Author(s):
 ZHOU Tian-jieJIANG Guo-ping
关键词:
 复杂网络相继故障负荷再分配网络鲁棒性
Keywords:
 complex networkscascading failuresload redistributionnetwork robustness
分类号:
TP31
文献标志码:
A
摘要:
 主要研究目的是在复杂网络发生相继故障的过程中,设计一种合理有效的复杂网络相继故障的负荷再分配策略,有效减小网络临界阈值αm,提高网络鲁棒性。通过对比研究和仿真建模的方法,提出了基于节点最大剩余容量的负荷再分配策略:当网络中节点发生故障时,故障节点的负荷分配给当前时刻网络内剩余容量最大的部分节点,这部分节点的个数与故障节点的度在数值上相等,并且这部分节点所能分得的负荷与其自身的剩余容量有关,剩余容量越大的节点相对而言所能分得的负荷越多。选取人工网络和实际网络进行仿真对比研究,结果表明,所提出的负荷再分配策略能够有效地减小临界阈值αm,说明该策略是合理有效的,能够提高网络鲁棒性。
Abstract:
 In order to improve the network robustness in the process of cascading failure,a reasonable and effective load redistribution strategy of the cascading failure nodes in the network is designed,so that the critical thresholdβm can be decreased. Through comparative study and simulation modeling method,a load redistribution strategy based on the maximum remaining capacity of the node is put for-ward. The load of a failure node will be distributed to the nodes that have the maximum remaining capacity in the network,and the num-ber of these nodes is the degree of the fault node, and the extra load which these nodes share depends on their remaining capacity. Through the simulation between the artificial network and actual network,the results show that the proposed strategy of the load redistri-bution can effectively decrease the critical thresholdβm ,so as to show the effectiveness of the strategy and improve the robustness of the network.

相似文献/References:

[1]李方洁 刘希玉.复杂网络维的测量[J].计算机技术与发展,2010,(04):61.
 LI Fang-jie,LIU Xi-yu.Measuring Dimensions for Complex Networks[J].,2010,(11):61.
[2]李晶晶 王红.用复杂网络理论分析电网及大停电事故[J].计算机技术与发展,2008,(10):247.
 LI Jing-jing,WANG Hong.Analysis on Power Grids and Blackouts with Complex Network Theory[J].,2008,(11):247.
[3]惠伟 王红.复杂网络在城市公交网络中的实证分析[J].计算机技术与发展,2008,(11):217.
 HUI Wei,WANG Hong.Empirical Analysis of Complex Networks in Public Traffic Networks[J].,2008,(11):217.
[4]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(11):4.
[5]赵鹏 耿焕同 蔡庆生 王清毅.一种基于加权复杂网络特征的K—means聚类算法[J].计算机技术与发展,2007,(09):35.
 ZHAO Peng,GENG Huan-tong,CAI Qing-sheng,et al.A Novel K- means Clustering Algorithm Based on Weighted Complex Networks Feature[J].,2007,(11):35.
[6]顾亦然 谢鸿飞 李金发.移动通信网络中人类行为动力学的研究[J].计算机技术与发展,2010,(09):57.
 GU Yi-ran,XIE Hong-fei,LI Jin-fa.Studies Based on Complex Network and Dynamics of Human Behavior in MC Network[J].,2010,(11):57.
[7]顾亦然 李金发 谢鸿飞.阵发特性影响因素的研究[J].计算机技术与发展,2010,(09):168.
 GU Yi-ran,LI Jin-fa,XIE Hong-fei.Study on Influence Factors of Characteristic of Burst[J].,2010,(11):168.
[8]何明东 熊建斌 李振坤.基于复杂网络的软件开发方法研究[J].计算机技术与发展,2011,(06):59.
 HE Ming-dong,XIONG Jian-bin,LI Zhen-kun.Complex Network-Based Software Development Method Research[J].,2011,(11):59.
[9]王泽洪 闵妍妮 刘名扬 谭韵天.Pub/Sub系统中基于免疫的新型路由算法[J].计算机技术与发展,2012,(02):6.
 WANG Ze-hong,MIN Yan-ni,LIU Ming-yang,et al.A New Immunity-Based Routing Strategy in Pub/Sub System[J].,2012,(11):6.
[10]马兴福 王红 李园园.基于复杂网络的中小企业板股市网络特性分析[J].计算机技术与发展,2012,(04):172.
 MA Xing-fu,WANG Hong,LI Yuan-yuan.Characteristic Analysis of Small and Medium Enterprises Board Stock Market Network Based on Complex Network[J].,2012,(11):172.
[11]张琨,陈李慧,刘健,等. 有向加权复杂网络仿真平台的设计与实现[J].计算机技术与发展,2014,24(10):202.
 ZHANG Kun,CHEN Li-hui,LIU Jian,et al. Design and Implementation of Directed Weighted Complex Network Simulation Platform[J].,2014,24(11):202.
[12]张畅,谢钧,胡谷雨,等. 复杂网络拓扑可视化方案设计与实现[J].计算机技术与发展,2014,24(12):78.
 ZHANG Chang,XIE Jun,HU Gu-yu,et al. Design and Implementation of Complex Network Topology Visualization Scheme[J].,2014,24(11):78.
[13]方木云,刘洪彬,谢恩文. Hadoop下基于边聚类的重叠社区发现算法研究[J].计算机技术与发展,2015,25(03):58.
 FANG Mu-yun,LIU Hong-bin,XIE En-wen. Research on Overlapping Communities Detecting Algorithm Using Hadoop Based on Edge Clustering[J].,2015,25(11):58.
[14]姜斐[],王晓军[],许斌[],等. 基于粒子松密度的复杂网络社团划分算法[J].计算机技术与发展,2016,26(10):60.
 JIANG Fei[],WANG Xiao-jun[],XU Bin[],et al. Community Clustering Algorithm in Complex Networks Based on Bulk Density[J].,2016,26(11):60.
[15]张兴兰,刘炀. 基于复杂网络及神经网络挖掘用户兴趣的方法[J].计算机技术与发展,2016,26(12):22.
 ZHANG Xing-lan,LIU Yang. Method of Mining User Interest Based on Complex Network and Neural Network[J].,2016,26(11):22.

更新日期/Last Update: 2016-12-09