[1]石曼曼,李雷.基于分段可调节OMP算法的图像压缩感知算法[J].计算机技术与发展,2016,26(11):14-18.
 SHI Man-man,LI Lei. An Image Compressed Sensing Algorithm Based on Novel Stagewise Regulation OMP Algorithm[J].,2016,26(11):14-18.
点击复制

基于分段可调节OMP算法的图像压缩感知算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年11期
页码:
14-18
栏目:
智能、算法、系统工程
出版日期:
2016-11-10

文章信息/Info

Title:
 An Image Compressed Sensing Algorithm Based on Novel Stagewise Regulation OMP Algorithm
文章编号:
1673-629X(2016)11-0014-05
作者:
石曼曼李雷
 南京邮电大学 理学院
Author(s):
SHI Man-manLI Lei
关键词:
 压缩感知贪婪算法图像重构分段可调节正交匹配追踪算法
Keywords:
 compressed sensinggreedy algorithmimage reconstructionstagewise regulation orthogonal matching pursuit reconstruction algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 压缩感知( CS)理论作用在稀疏信号或可压缩信号,用很小的采样速率,保证信号采样与压缩同时进行,并可以精确恢复原始信号。文中侧重CS重构算法中经典的贪婪算法研究,介绍了四种经典的贪婪算法:正交匹配( OMP)算法、正则化正交匹配( ROMP)算法、压缩采样匹配追踪( CoSaMP)算法和分段正交匹配追踪( StOMP)算法。从重构精度和重构耗时两个方面,结合横向和纵向详细的比较,详尽地给出了不同算法的区别以及优缺点。在StOMP算法增加考虑稀疏度和观测矩阵行列关系的可调节因子,提出了一种改进算法—分段可调节OMP重构( StrOMP)算法。通过仿真实验发现,提出的改进算法既提高了图像重构精度,又保证了其重构时间短的优越性。
Abstract:
 Compressed Sensing ( CS) theory uses small frequency,which is mainly for sparse or compressible signal. Sampling and com-pressing are also implemented successfully at the same time, and can accurately recover the original signal. It focuses on the classical greedy algorithm in this paper for compressed sensing reconstruction algorithm,including four classical matching pursuit algorithms like Orthogonal Matching Pursuit ( OMP) ,the Regularized Orthogonal Matching Pursuit ( ROMP) ,Compressive Sampling Matching Pursuit ( CoSaMP) and Stagewise Orthogonal Matching Pursuit ( StOMP) . Considering the reconstruction accuracy and time as evaluation stand-ards,the advantages and disadvantages of algorithms and difference of them are given by combining with horizontal and vertical compari-son. The adjustment factor for StOMP at each iteration is put considering the sparsity and the observation matrix ranks,and an improved algorithm is proposed, which makes innovations for StrOMP algorithm, named Stagewise regulation Orthogonal Matching Pursuit ( StrOMP) . The simulation shows the proposed algorithm can raise the accuracy of image reconstruction,and guarantee the priority of the reconstruction time of the new algorithm.

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(11):145.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(11):12.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(11):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(11):99.
[6]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(11):220.
[7]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(11):101.
[8]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(11):198.
[9]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(11):83.
[10]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(11):118.
[11]徐志坚,邱晓晖. 采用压缩感知的协作多点信道反馈算法研究[J].计算机技术与发展,2014,24(10):221.
 XU Zhi-jian,QIU Xiao-hui. Study on Channel Feedback Algorithm Using Compressed Sensing for Coordinated Multiple Point[J].,2014,24(11):221.
[12]柯家龙,李继楼. 压缩感知中的投影矩阵优化算法[J].计算机技术与发展,2015,25(03):95.
 KE Jia-long,LI Ji-lou. Algorithm of Optimization for Projection Matrix in Compressive Sensing[J].,2015,25(11):95.
[13]李尚靖[],朱琦[][],朱俊华[]. 基于压缩感知和正弦字典的语音编码新方案[J].计算机技术与发展,2015,25(04):188.
 LI Shang-jing[],ZHU Qi[][],ZHU Jun-hua[]. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary[J].,2015,25(11):188.
[14]郭海亮. 基于GEP算法的压缩感知语音观测序列建模[J].计算机技术与发展,2015,25(05):46.
 GUO Hai-liang. Speech Signals Measurements Sequence Modeling in Compressed Sensing Based on GEP[J].,2015,25(11):46.
[15]郭青青,李雷. 基于SiT-ROMP算法的视频封装帧压缩重构研究[J].计算机技术与发展,2015,25(08):113.
 GUO Qing-qing,LI Lei. Research on Compressing and Reconstructing of Encapsulated Video Frame Based on Self-iterative Threshold ROMP Algorithm[J].,2015,25(11):113.
[16]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(11):111.
[17]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(11):101.
[18]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(11):195.
[19]孙君,孙照伟. 基于压缩感知的信道互易性补偿方法[J].计算机技术与发展,2015,25(12):210.
 SUN Jun,SUN Zhao-wei. A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing[J].,2015,25(11):210.
[20]于云,周伟栋. 基于压缩感知的鲁棒性说话人识别参数研究[J].计算机技术与发展,2016,26(03):18.
 YU Yun,ZHOU Wei-dong. Research on Robust Speaker Recognition Parameters Based on Compressed Sensing[J].,2016,26(11):18.

更新日期/Last Update: 2016-12-09