[1]张珏[][],陈莉[],田建学[]. 面向零售业的关联规则挖掘的研究与实现[J].计算机技术与发展,2016,26(10):146-150.
 ZHANG Jue[][],CHEN Li[],TIAN Jian-xue[]. Research and Realization of Association Rules Mining in Supermarket[J].,2016,26(10):146-150.
点击复制

 面向零售业的关联规则挖掘的研究与实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
146-150
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 Research and Realization of Association Rules Mining in Supermarket
文章编号:
1673-629X(2016)10-0146-05
作者:
 张珏[1][2]陈莉[2]田建学[1]
 1.榆林学院 信息工程学院;2.西北大学 信息科学与技术学院;3.西北大学 信息科学与技术学院
Author(s):
 ZHANG Jue[1][2] CHEN Li[2] TIAN Jian-xue[1]
关键词:
 数据挖掘关联规则零售业商务智能系统Apriori算法
Keywords:
 data miningassociation rulesretail business intelligence systemApriori algorithm
分类号:
TP311
文献标志码:
A
摘要:
 随着零售业在城市的快速发展,智能系统积累了大量的零售业原始数据,急需一种技术来发现数据中蕴含的内在规则,为企业管理者提供决策支持。数据挖掘是目前一个重要的研究方向,可以把日常业务数据知识化。介绍了零售业商务智能系统的发展现状,并通过分析零售业数据来掌握顾客的购买偏好,并同时对挖掘结果进行说明,在一定程度上利用关联规则技术解决现实中的商业问题。针对数量和利润的因素,提出利用频繁项目集寻找商品利润最大化的销售组合模型,零售商可以根据该模型输出的销售组合模型对商品进行捆绑销售,以获得最大利润。提出来竞争商品的概念,即找出隐含在数据库中相互竞争商品的模型,这样就得到了零售业商品推荐模型。实验结果表明,提出的模型能找出高交叉销售利润的商品,在零售业中有很好的实用性。
Abstract:
 With the rapid development of supermarket,a lot of business data are accumulated by intelligent system. It’ s imperative and necessary to find an effective technique to explore and discover the potential knowledge from the enormous amount of data,which is help-ful for business decision making. Data mining has an important research role in the world. It can be used to acquire the knowledge. The current situation of supermarket development is analyzed,and the customer’ s buying behavior is understood through the analysis of the retail sales data,making the explanation to the mining result,application of association rules to solve real business problems. According to the factors of the quantity and profit,the frequent item sets are adopted to find the sales combination model of profit maximization of commodity,and retailers can use it to bundling and gain the biggest profit. Based on the concept of competitive products,a model is pro-posed that can be used to find out the hidden in the retail database by the frequent and non-frequent items,getting the model of retail commodity recommendation. The experiment shows that the model can find out the high cross selling goods with good practicality in su-permarkets.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(10):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(10):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(10):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(10):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(10):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(10):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(10):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(10):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(10):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(10):113.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(10):145.
[12]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(10):45.
[13]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(10):234.
[14]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(10):83.
[15]牛永洁,薛苏琴. 基于PDFBox抽取学术论文信息的实现[J].计算机技术与发展,2014,24(12):61.
 NIU Yong-jie,XUE Su-qin. Realization of Extraction of Academic Papers Information Based on PDFBox[J].,2014,24(10):61.
[16]郑超,高茂庭,吴爱华. 基于RFID及其路径约束的生产检查流程控制[J].计算机技术与发展,2015,25(02):225.
 ZHENG Chao,GAO Mao-ting,WU Ai-hua. Production Testing Process Control Based on RFID with Path Constraint[J].,2015,25(10):225.
[17]顾伟[][],傅德胜[][],蔡玮[]. 基于命题逻辑的关联规则挖掘算法[J].计算机技术与发展,2015,25(03):91.
 GU Wei[][],FU De-sheng[][],CAI Wei[]. Association Rules Mining Algorithm Based on Propositional Logic[J].,2015,25(10):91.
[18]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(10):166.
[19]王晓鹏,武彤. 生产质量控制数据仓库模型设计与实现[J].计算机技术与发展,2015,25(06):181.
 WANG Xiao-peng,WU Tong. Design and Realization of Data Warehouse Model on Production Quality Control[J].,2015,25(10):181.
[20]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(10):53.

更新日期/Last Update: 2016-11-29