[1]姜斐[],王晓军[],许斌[],等. 基于粒子松密度的复杂网络社团划分算法[J].计算机技术与发展,2016,26(10):60-63.
 JIANG Fei[],WANG Xiao-jun[],XU Bin[],et al. Community Clustering Algorithm in Complex Networks Based on Bulk Density[J].,2016,26(10):60-63.
点击复制

 基于粒子松密度的复杂网络社团划分算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
60-63
栏目:
智能、算法、系统工程
出版日期:
2016-10-10

文章信息/Info

Title:
 Community Clustering Algorithm in Complex Networks Based on Bulk Density
文章编号:
1673-629X(2016)10-0060-04
作者:
 姜斐[1]王晓军[1]许斌[2]亓晋[2]
1.南京邮电大学 计算机学院 软件学院;2.南京邮电大学 物联网学院
Author(s):
 JIANG Fei[1]WANG Xiao-jun[1]XU Bin[2]QI Jin[2]
关键词:
 复杂网络松密度社团 挖掘
Keywords:
 complex  networksbulk  densitycommunityclustering
分类号:
TP301.6
文献标志码:
A
摘要:
 复杂网络的社团挖掘算法是近几年数据挖掘领域新兴起的一个热点课题。传统的智能优化算法虽然在社团挖掘方面有较好的效果,但其执行效率低,适用范围窄;而已有的启发式算法虽然在社团挖掘效率方面的优势比较明显,但相比于智能优化算法,其普适性仍未得到改善。为综合提高社团划分算法的效率,通过对材料科学领域的松密度的概念进行调研,结合复杂网络的特有属性,提出一种基于节点松密度的社团挖掘算法。实验结果表明,相比于其他算法,该算法在时间和精度上都有较为显著的优势。
Abstract:
 The association clustering algorithm of complex networks is a new emerging hot topic in the field of data mining. Traditional intelligent optimization algorithm has better effect in clustering,but it has low execution efficiency and narrow application scope. Although some heuristic algorithm has obvious advantages of clustering efficiency,but compared with the intelligent optimization algorithm,univer-sality still has not be improved. To improve the efficiency of community division algorithm,through the research of the concept of bulk density in the field of materials science,puts forward a kind of association clustering algorithm based on bulk density. The experiment shows that the algorithm proposed has obvious advantage in time and precision compared with other algorithms.

相似文献/References:

[1]李方洁 刘希玉.复杂网络维的测量[J].计算机技术与发展,2010,(04):61.
 LI Fang-jie,LIU Xi-yu.Measuring Dimensions for Complex Networks[J].,2010,(10):61.
[2]李晶晶 王红.用复杂网络理论分析电网及大停电事故[J].计算机技术与发展,2008,(10):247.
 LI Jing-jing,WANG Hong.Analysis on Power Grids and Blackouts with Complex Network Theory[J].,2008,(10):247.
[3]惠伟 王红.复杂网络在城市公交网络中的实证分析[J].计算机技术与发展,2008,(11):217.
 HUI Wei,WANG Hong.Empirical Analysis of Complex Networks in Public Traffic Networks[J].,2008,(10):217.
[4]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(10):4.
[5]赵鹏 耿焕同 蔡庆生 王清毅.一种基于加权复杂网络特征的K—means聚类算法[J].计算机技术与发展,2007,(09):35.
 ZHAO Peng,GENG Huan-tong,CAI Qing-sheng,et al.A Novel K- means Clustering Algorithm Based on Weighted Complex Networks Feature[J].,2007,(10):35.
[6]顾亦然 谢鸿飞 李金发.移动通信网络中人类行为动力学的研究[J].计算机技术与发展,2010,(09):57.
 GU Yi-ran,XIE Hong-fei,LI Jin-fa.Studies Based on Complex Network and Dynamics of Human Behavior in MC Network[J].,2010,(10):57.
[7]顾亦然 李金发 谢鸿飞.阵发特性影响因素的研究[J].计算机技术与发展,2010,(09):168.
 GU Yi-ran,LI Jin-fa,XIE Hong-fei.Study on Influence Factors of Characteristic of Burst[J].,2010,(10):168.
[8]何明东 熊建斌 李振坤.基于复杂网络的软件开发方法研究[J].计算机技术与发展,2011,(06):59.
 HE Ming-dong,XIONG Jian-bin,LI Zhen-kun.Complex Network-Based Software Development Method Research[J].,2011,(10):59.
[9]王泽洪 闵妍妮 刘名扬 谭韵天.Pub/Sub系统中基于免疫的新型路由算法[J].计算机技术与发展,2012,(02):6.
 WANG Ze-hong,MIN Yan-ni,LIU Ming-yang,et al.A New Immunity-Based Routing Strategy in Pub/Sub System[J].,2012,(10):6.
[10]马兴福 王红 李园园.基于复杂网络的中小企业板股市网络特性分析[J].计算机技术与发展,2012,(04):172.
 MA Xing-fu,WANG Hong,LI Yuan-yuan.Characteristic Analysis of Small and Medium Enterprises Board Stock Market Network Based on Complex Network[J].,2012,(10):172.
[11]张琨,陈李慧,刘健,等. 有向加权复杂网络仿真平台的设计与实现[J].计算机技术与发展,2014,24(10):202.
 ZHANG Kun,CHEN Li-hui,LIU Jian,et al. Design and Implementation of Directed Weighted Complex Network Simulation Platform[J].,2014,24(10):202.
[12]张畅,谢钧,胡谷雨,等. 复杂网络拓扑可视化方案设计与实现[J].计算机技术与发展,2014,24(12):78.
 ZHANG Chang,XIE Jun,HU Gu-yu,et al. Design and Implementation of Complex Network Topology Visualization Scheme[J].,2014,24(10):78.
[13]方木云,刘洪彬,谢恩文. Hadoop下基于边聚类的重叠社区发现算法研究[J].计算机技术与发展,2015,25(03):58.
 FANG Mu-yun,LIU Hong-bin,XIE En-wen. Research on Overlapping Communities Detecting Algorithm Using Hadoop Based on Edge Clustering[J].,2015,25(10):58.
[14]周添杰,蒋国平. 基于节点最大剩余容量的负荷再分配策略研究[J].计算机技术与发展,2016,26(11):63.
 ZHOU Tian-jie,JIANG Guo-ping. Research on Load Redistribution Strategy Based on Maximum Remaining Capacity of Node[J].,2016,26(10):63.
[15]张兴兰,刘炀. 基于复杂网络及神经网络挖掘用户兴趣的方法[J].计算机技术与发展,2016,26(12):22.
 ZHANG Xing-lan,LIU Yang. Method of Mining User Interest Based on Complex Network and Neural Network[J].,2016,26(10):22.

更新日期/Last Update: 2016-11-25