[1]郑印[],吴振宇[],沈苏彬[]. 一种基于OpenStack的云存储空间动态调整方案[J].计算机技术与发展,2016,26(10):45-49.
 ZHENG Yin[],WU Zhen-yu[],SHEN Su-bin[]. A Dynamic Adjustment Solution of Cloud Storage Space Based on OpenStack[J].,2016,26(10):45-49.
点击复制

 一种基于OpenStack的云存储空间动态调整方案()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
45-49
栏目:
智能、算法、系统工程
出版日期:
2016-10-10

文章信息/Info

Title:
 A Dynamic Adjustment Solution of Cloud Storage Space Based on OpenStack
文章编号:
1673-629X(2016)10-0045-05
作者:
 郑印[1]吴振宇[2]沈苏彬[1]
 1.南京邮电大学 计算机学院;2.南京邮电大学 物联网学院
Author(s):
 ZHENG Yin[1]WU Zhen-yu[2] SHEN Su-bin[1]
关键词:
 Open Stack云存储 虚拟资源监测qemu-guest-agent
Keywords:
 OpenStackcloud storagevirtual resource monitoringqemu-guest-agent
分类号:
TP301
文献标志码:
A
摘要:
 针对OpenStack云主机的资源监测和存储空间不能动态分配的问题,提出一种基于OpenStack云存储空间动态调整方案。在OpenStack云主机的内部安装qemu-guest-agent(qga),实现宿主机与云主机之间的通信,然后扩展OpenStack云平台,实现监测云主机资源并且对数据进行分析,得到云主机资源的使用情况。当云主机的磁盘利用率很高时,可以利用OpenStack提供的API,自动创建存储空间,分配给云主机使用,从而动态扩展了云主机的存储空间。实验结果表明,文中提出的方案能够根据云主机存储资源的使用情况,动态调整存储空间大小。
Abstract:
 Considering the problems that resource of OpenStack is monitored hardly and storage space cannot be allocated to the virtual machine dynamically,a dynamic adjustment solution of storage space based on OpenStack is proposed. The qemu-guest-agent is installed in the OpenStack virtual machine,which realizes the communication between the host and the virtual machine. Then functions of Open-Stack are extended to monitor virtual machine resources and analyze the data. When the disk utilization of virtual machine is very high, OpenStack API is used automatically to create storage space which will be assigned to the virtual machine. Therefore,the storage space of the virtual machine is expanded dynamically. Experimental results show that the proposed solution can dynamically adjust the storage space on the basis of the usage of the virtual machine.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2016-11-25