[1]赵乐乐,黄刚,马越. 基于Docker的Hadoop平台架构研究[J].计算机技术与发展,2016,26(09):99-103.
 ZHAO Le-le,HUANG Gang,MA Yue. Research on Hadoop Platform Based on Docker[J].,2016,26(09):99-103.
点击复制

 基于Docker的Hadoop平台架构研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
99-103
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 Research on Hadoop Platform Based on Docker
文章编号:
1673-629X(2016)09-0099-05
作者:
 赵乐乐黄刚马越
 南京邮电大学 计算机学院
Author(s):
 ZHAO Le-leHUANG GangMA Yue
关键词:
 Hadoop虚拟化容器Docker
Keywords:
 HadoopvirtualizationcontainerDocker
分类号:
TP31
文献标志码:
A
摘要:
 Hadoop作为云计算中重要的大数据处理平台,需要较高的读写速率。传统的虚拟化技术对于物理主机的资源利用率,无法达到真实物理主机的水平。同时,传统虚拟化技术难以灵活配置文件和自动化创建、部署机制。容器是基于共享Linux内核的一种虚拟化技术,能够达到接近物理主机的资源利用率。 Docker是一种轻量级新兴的虚拟化容器技术,在复杂的集群系统的搭建方面,具有可移植、易使用、跨平台等优势。所以,在复杂的分布式应用集群的部署中,Docker能够快速、准确、标准化封装应用程序并自动化部署整个运行环境。因此,Docker是容器虚拟化技术下一个相对成熟的实现方案。通过实验验证了Docker相比传统虚拟化技术在读写性能上的优势,并构建了基于Docker的Hadoop平台,讨论了在Docker上构建Hadoop的优势。
Abstract:
 Hadoop,as an important big data processing platform,needs higher I/O rate. For the resource utilization of physical host,the traditional virtualization technology cannot reach the level of real physical host. Meanwhile,it is difficult to configure the files flexibly and create and deploy mechanisms automatically. The container is a virtualization technology based on sharing Linux kernel,which can reach the resource utilization close to the physical host. Docker emerging is a lightweight container of virtualization technology,and in the com-plex cluster system construction,it is portable and easy to use,with cross-platform. So,in the complicated distributed deployment of ap-plication clusters,Docker can be rapid,accurate,and standardized packaged applications and deploy automatically whole runtime environ-ment. Therefore,Docker is one of the mature implementation scheme of the container virtualization technology. It is verified by the exper-iment that the Docker is better than traditional virtualization technology in reading/writing performance,and the Hadoop platform based on the Docker is established and the advantage of Hadoop on Docker is discussed.

相似文献/References:

[1]李远方 邓世昆 闻玉彪 韩月阳.Hadoop-MapReduce下的PageRank矩阵分块算法[J].计算机技术与发展,2011,(08):6.
 LI Yuan-fang,DENG Shi-kun,WEN Yu-biao,et al.PageRank Matrix Partitioned Algorithm Using Hadoop-MapReduce[J].,2011,(09):6.
[2]李远方 贾时银 邓世昆 韩月阳.基于树结构的MapReduce模型[J].计算机技术与发展,2011,(08):149.
 LI Yuan-fang,JIA Shi-yin,DENG Shi-kun,et al.MapReduce Model Based on Tree Structure[J].,2011,(09):149.
[3]王梅,朱信忠,赵建民,等.基于 Hadoop 的海量图像检索系统[J].计算机技术与发展,2013,(01):204.
 WANG Mei,ZHU Xin-zhong,ZHAO Jian-min,et al.Massive Images Retrieval System Based on Hadoop[J].,2013,(09):204.
[4]王晓军,孙惠.基于MapReduce的多路连接优化方法研究[J].计算机技术与发展,2013,(06):59.
 WANG Xiao-jun,SUN Hui.Research of Optimizing Multiway Joins Based on MapReduce[J].,2013,(09):59.
[5]朱贤军,李敬兆.无加密模式下对云数据的隐私保密[J].计算机技术与发展,2013,(06):216.
 ZHU Xian-jun,LI Jing-zhao.Cloud Data Privacy under None Encryption[J].,2013,(09):216.
[6]周婷,张君瑛,罗成.基于Hadoop的K-means聚类算法的实现[J].计算机技术与发展,2013,(07):18.
 ZHOU Ting[],ZHANG Jun-ying[],LUO Cheng[].Realization of K-means Clustering Algorithm Based on Hadoop[J].,2013,(09):18.
[7]吕婉琪,钟诚,唐印浒,等.Hadoop分布式架构下大数据集的并行挖掘[J].计算机技术与发展,2014,24(01):22.
 L Wan-qi,ZHONG Cheng,TANG Yin-hu,et al.Parallel Mining of Large Dataset in Hadoop Distributed Computing Framework[J].,2014,24(09):22.
[8]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[9]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[10]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[11]王晓军,邹亮亮. Hadoop迭代优化技术的研究[J].计算机技术与发展,2014,24(09):98.
 WANG Xiao-jun,ZOU Liang-liang. Research on Optimizing Iterative Technology of Hadoop[J].,2014,24(09):98.
[12]徐源吾[][],王珣[][]. 基于Hadoop的智能家居信息处理平台[J].计算机技术与发展,2014,24(09):183.
 XU Yuan-wu[] [],WANG Xun[][]. nformation Processing Platform of Smart Home Based on Hadoop[J].,2014,24(09):183.
[13]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(09):83.
[14]王全民,苗雨,何明,等. 基于矩阵分解的协同过滤算法的并行化研究[J].计算机技术与发展,2015,25(02):55.
 ANG Quan-min,MIAO Yu,HE Ming,et al. Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization[J].,2015,25(09):55.
[15]方木云,刘洪彬,谢恩文. Hadoop下基于边聚类的重叠社区发现算法研究[J].计算机技术与发展,2015,25(03):58.
 FANG Mu-yun,LIU Hong-bin,XIE En-wen. Research on Overlapping Communities Detecting Algorithm Using Hadoop Based on Edge Clustering[J].,2015,25(09):58.
[16]秦军[],童毅[],戴新华[],等. 基于MapReduce数据密集型负载调度策略研究[J].计算机技术与发展,2015,25(04):48.
 QIN Jun[],TONG Yi[],DAI Xin-hua[],et al. Research on Scheduling Strategy of Data Intensive Workloads Based on MapReduce[J].,2015,25(09):48.
[17]徐新瑞,孟彩霞,周雯,等. 一种基于Spark时效化协同过滤推荐算法[J].计算机技术与发展,2015,25(06):48.
 XU Xin-rui,MENG Cai-xia,ZHOU Wen,et al. A Real-time Collaborative Filtering Recommendation Algorithm Based on Spark[J].,2015,25(09):48.
[18]李晨,杨子江,朱世伟,等. 基于Hadoop的网络舆情监控平台设计与实现[J].计算机技术与发展,2016,26(02):144.
 LI Chen,YANG Zi-jiang,ZHU Shi-wei,et al. Design and Implementation of Network Consensus Monitoring System Based on Hadoop[J].,2016,26(09):144.
[19]马腾腾[],朱庆华[],曹菡[],等. 基于Hadoop的旅游景点推荐的算法实现与应用[J].计算机技术与发展,2016,26(03):47.
 MA Teng-teng[],ZHU Qing-hua[],CAO Han[],et al. Implementation and Application of Algorithm of Tourist Attractions Recommendation Based on Hadoop[J].,2016,26(09):47.
[20]李正杰,黄刚. 基于Hadoop平台的SVM KNN分类算法的研究[J].计算机技术与发展,2016,26(03):75.
 LI Zheng-jie,HUANG Gang. Research on SVM KNN Classification Algorithm Based on Hadoop Platform[J].,2016,26(09):75.

更新日期/Last Update: 2016-10-25