[1]李永生[],曾沁[][],杨玉红[],等. 基于大数据技术的气象算法并行化研究[J].计算机技术与发展,2016,26(09):47-49.
 LI Yong-sheng[],ZENG Qin[],YANG Yu-hong[],et al. Research on Parallelism of Typical Meteorological Algorithm Based on Big Data Technology[J].,2016,26(09):47-49.
点击复制

 基于大数据技术的气象算法并行化研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年09期
页码:
47-49
栏目:
应用开发研究
出版日期:
2016-09-10

文章信息/Info

Title:
 Research on Parallelism of Typical Meteorological Algorithm Based on Big Data Technology
文章编号:
1673-629X(2016)09-0047-03
作者:
 李永生[1]曾沁[1][2]杨玉红[1]陈晋[3]
 1.广东省气象探测数据中心;2.广东省气象探测数据中心;3.同济大学 数学系
Author(s):
 LI Yong-sheng[1]ZENG Qin[2]YANG Yu-hong[1]CHEN Jin[3]
关键词:
 大数据分析技术并行化气象数值算法Web服务
Keywords:
 data analysis technologyparallelismmeteorological numerical algorithmWeb Service
分类号:
TP312
文献标志码:
A
摘要:
 在气象数值预报解释应用业务中,传统数值算法的应用呈现逐步增加的趋势,但是随着算法输入数据种类和数据量的增加导致算法的完成时间大幅增长,甚至出现了算法完成时间性能瓶颈。为了突破算法时间上的性能瓶颈,基于OpenCV算法库,实现了多元逐步回归和卡尔曼滤波算法的执行模块,采用Map-Reduce计算框架设计和实现了多站点输入数据分割的并行化执行模块;规范了算法输入和输出的数据格式,设计了并行算法的Web服务流程以及实现了基于Rest Web Service的算法访问接口。业务应用实验测试表明,并行算法能够很好地满足气象业务实际需求。
Abstract:
 The traditional application of numerical algorithms is widely used in the interpretation application of numerical weather predic-tion. However with the increasing of the type and amount of algorithm input data,the completion time of it presents exponential growth, which faces the bottleneck in the algorithm completion time performance. In order to break it,an execution module of stepwise multiple regression and Kalman filter algorithm is developed based on the OpenCV library ( Open Source Computer Vision Library) . A distributed data storage model and parallel data access service are designed based on Hadoop framework,and the parallel strategy is designed based on the Map-Reduce framework,then the parallelism execution module is achieved based on the implement of a multi-site input data par-tition. The algorithm input and output data format are standardized. A Rest Web Service interface of parallel algorithm is designed. Opera-tional trial in multi-user environment shows that this algorithm can meet the actual requirements of meteorological business greatly.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.

更新日期/Last Update: 2016-10-25