[1]赵新苗,冯向萍,李永可. 改进的中心向量算法在农业信息分类中的研究[J].计算机技术与发展,2016,26(08):146-151.
 ZHAO Xin-miao,FENG Xiang-ping,LI Yong-ke. Research on Improved Center Vector Algorithm in Agricultural Information Classification[J].,2016,26(08):146-151.
点击复制

 改进的中心向量算法在农业信息分类中的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年08期
页码:
146-151
栏目:
应用开发研究
出版日期:
2016-08-10

文章信息/Info

Title:
 Research on Improved Center Vector Algorithm in Agricultural Information Classification
文章编号:
1673-629X(2016)08-0146-06
作者:
 赵新苗冯向萍李永可
 新疆农业大学 计算机与信息工程学院
Author(s):
 ZHAO Xin-miaoFENG Xiang-pingLI Yong-ke
关键词:
 农业信息分类中心法 中心向量文本特征向量
Keywords:
 agricultural informationclassificationcentroid-based methodcenter vectortext feature vector
分类号:
TP301
文献标志码:
A
摘要:
 自21世纪以来,农业信息网站开始迅速增加。为了给广大农民朋友和农业科研人员提供方便,需要对农业信息进行分类。将农业信息进行分类有利于农业信息的获取和管理,农业分类的方法有很多种,其中中心法分类相对简单且卓有成效。中心向量计算方法是中心法分类的核心,文中实验目的在于找出效率较高的中心向量计算方法来提高分类的准确率。目前文本类的中心向量计算多数是由该类别文本特征向量的简单算术平均得到的,这样计算得出的中心向量往往会有模型偏差,以至于不能得到很好的分类效果。为解决这个问题,使用总和法、均值法和归一化法计算中心向量,并进行对比实验,结果表明归一化法在查准率、查全率和F1测度都有较好的表现。
Abstract:
 Since twenty-first century,the site of agricultural information has increased rapidly. In order to provide the convenience for farmers and agricultural researchers,it is need to classify agricultural information. The classification of agricultural information is favor of acquisition and management of the agricultural information. There are several ways to classify agricultural information,in which the cen-troid-based classification is simple and effective. In this paper,it uses centroid-based classification to find the more efficient one to im-prove the accuracy of agricultural information. At present,most of the methods for calculating the center vector of the text are the average value of the text feature vector. This method can’ t get a good classification results due to the model deviation for center vector obtained. In order to solve this problem,the sum method,means method and normalization method is used to calculate the center vector and the re-sult of three methods are compared. The results show that the normalization method has better performance in Precision,Recall and F1 measure.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.
[11]陈燕红[],刘风华[]. 一种改进的潜在语义检索模型研究[J].计算机技术与发展,2014,24(09):120.
  Study on Improved Latent Semantic Retrieval Model[J].,2014,24(08):120.
[12]赵新苗,冯向萍,赵涛. 农业信息分类中K-means与SVM的混合算法研究[J].计算机技术与发展,2017,27(06):178.
 ZHAO Xin-miao,FENG Xiang-ping,ZHAO Tao. Investigation on K-means and SVM Mixed Algorithm for Agriculture Information Classification[J].,2017,27(08):178.

更新日期/Last Update: 2016-09-29