[1]程艳云,张守超,杨杨. 基于大数据的时间序列预测研究与应用[J].计算机技术与发展,2016,26(06):175-178.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research and Application of Time Series Forecasting Based on Big Data[J].,2016,26(06):175-178.
点击复制

 基于大数据的时间序列预测研究与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年06期
页码:
175-178
栏目:
应用开发研究
出版日期:
2016-06-10

文章信息/Info

Title:
 Research and Application of Time Series Forecasting Based on Big Data
文章编号:
1673-629X(2016)06-0175-04
作者:
 程艳云张守超杨杨
 南京邮电大学 自动化学院
Author(s):
 CHENG Yan-yunZHANG Shou-chaoYANG Yang
关键词:
 大数据时间序列预测分析移动通信
Keywords:
 big datatime seriesforecasting analysismobile communication
分类号:
TN915.07
文献标志码:
A
摘要:
 针对传统时间序列预测算法在分析海量数据时预测精度与预测速率低下的问题,提出一种全新的时间序列预测算法,研究如何将大数据技术应用到移动通信网时间序列形式的核心性能指标( KPI)预测中。文中首先介绍了移动通信网性能指标预测的意义及传统时间序列预测算法的缺陷。其次,基于移动通信网及时间序列特性,给出了基于大数据的时间序列预测算法的理论推导过程,通过大数据方法将时间序列分解为四个不同分量并进行特征提取,根据提取结果进行预测分析。最后,介绍了方法的实现过程,采用真实网络核心性能指标进行实验对比分析,验证该方法的可行性与效率。实验结果表明,基于大数据的时间序列预测算法相比于传统的时间序列预测算法,具有更高的预测精度、更快的预测速率。
Abstract:
 According to the detection accuracy and efficiency limitation of traditional time series forecasting methods when dealing with a large amount of data,a new time series forecasting method is put forward to study how to apply the big data technology into Key Perform-ance Index ( KPI) prediction of mobile communication network,which is form of time series. First,it introduces the significance of KPI prediction for mobile communication network and the defects of traditional time series prediction algorithm in this paper. Secondly,the theoretical derivation of time series prediction algorithm based on the big data is presented according to the characteristics of mobile com-munication network and time series. The time series is decomposed into four different components and the feature is extracted by the big data method,and the forecasting analysis is carried out according to the results of the extraction. Finally it gives implementation process and uses the real network KPI to carry out experimental comparative analysis for verification of the feasibility and efficiency of the big da-ta method. The experimental results show that the big data method has higher precision and rate compared with traditional methods.

相似文献/References:

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,(04):168.
 YAN Xiao-feng,ZHANG De-xin.Big Data Research[J].,2013,(06):168.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[11]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(06):14.
[12]金宗泽,冯亚丽,文必龙,等. 大数据分析流程框架的研究[J].计算机技术与发展,2014,24(08):117.
 JIN Zong-ze,FENG Ya-l,WEN Bi-long,et al. Research on Framework of Big Data Analytic Process[J].,2014,24(06):117.
[13]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(06):68.
[14]谢怡,王航,刘新瀚,等. 大数据环境下数据读取关键技术研究[J].计算机技术与发展,2015,25(02):113.
 XIE Yi,WANG Hang,LIU Xin-han,et al. Research on Data Reading Techniques Based on Big Data Environment[J].,2015,25(06):113.
[15]付燕平,罗明宇,刘其军. 大数据三维模型快速显示技术研究[J].计算机技术与发展,2015,25(05):87.
 FU Yan-ping,LUO Ming-yu,LIU Qi-jun. Research on Fast Display Technology for Big Data Three-dimensional Model[J].,2015,25(06):87.
[16]赵震,任永昌. 大数据时代基于云计算的电子政务平台研究[J].计算机技术与发展,2015,25(10):145.
 ZHAO Zhen,REN Yong-chang. Research on E-government Platform Based on Cloud Computing in Big Data Era[J].,2015,25(06):145.
[17]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(06):14.
[18]肖洁,袁嵩,谭天. 大数据时代数据隐私安全研究[J].计算机技术与发展,2016,26(05):91.
 XIAO Jie,YUAN Song,TAN Tian. Research on Data Privacy in Big Data Age[J].,2016,26(06):91.
[19]郭先超,林宗缪,姚文勇. 互联网+质量检测平台设计[J].计算机技术与发展,2016,26(05):120.
 GUO Xian-chao,LIN Zong-miao,YAO Wen-yong. Design of Platform for Internet+ Quality Inspection[J].,2016,26(06):120.
[20]程艳云,张守超,杨杨. 基于大数据的时间序列异常点检测研究[J].计算机技术与发展,2016,26(05):139.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J].,2016,26(06):139.

更新日期/Last Update: 2016-09-26