[1]冯璞,李玉恵,李勃,等. 基于纹理特征的混合高斯背景建模算法研究[J].计算机技术与发展,2016,26(05):22-26.
 FENG Pu,LI Yu-hui,LI Bo,et al. Research on Gaussian Mixture Background Modeling Algorithm Based on Texture Feature[J].,2016,26(05):22-26.
点击复制

 基于纹理特征的混合高斯背景建模算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年05期
页码:
22-26
栏目:
智能、算法、系统工程
出版日期:
2016-05-10

文章信息/Info

Title:
 Research on Gaussian Mixture Background Modeling Algorithm Based on Texture Feature
文章编号:
1673-629X(2016)05-0022-05
作者:
 冯璞李玉恵李勃游旭晨
 昆明理工大学 信息工程与自动化学院
Author(s):
 FENG PuLI Yu-huiLI BoYOU Xu-chen
关键词:
 运动目标检测混合高斯模型局部纹理特征背景模型
Keywords:
 moving target detectionGaussian mixture modellocal texture featurebackground model
分类号:
TP391.4
文献标志码:
A
摘要:
 在智能交通系统中,运动目标的检测是一个基本而又关键的问题.而传统高斯混合模型能较好地检测出运动目标,但由于其没有考虑像素的局部特征,使得运动目标区域的错误检测率有所增加.为了更好地在高速交通视频中检测出完整且准确的运动目标前景区域,文中在子空间的思想基础上,提出一种基于像素局部纹理特征的高斯混合模型改进算法,即以像素周围5*5图像块的均值、标准差、最大值、最小值和当前像素值5个特征作为局部纹理特征,建立高斯混合背景模型,进行运动目标检测.经过大量实验,结果表明该算法能更准确、完整地检测出运动目标并具有很好的环境适应性,特别是在运动目标区域与相应的背景区域颜色较为相似时,运动目标检测效果改善较为明显.
Abstract:
 Moving target detection in the intelligent transportation system is a fundamentaland key issue. Traditional Gaussian mixture model can better detect moving targets,but without considering the local characteristics of pixels,resulting in the error detection rate in-creases of moving target. To solve these problem,on the basis of idea of subspace,an improved Gaussian mixture model algorithm based on local texture features for pixel is put forward. It uses the average,standard deviation,maximum,minimum,and current pixel values a-round pixel 5*5 image block as local texture features,and establishes Gaussian mixture background model for moving object detection. After extensive comparison of experimental results,it shows that the algorithm can more accurately and completely detect moving targets and has good environmental adaptability. When the color of moving target area is similar with corresponding background area,the detec-tion results improved is obvious.

相似文献/References:

[1]张玉荣 涂铮铮 罗斌.基于帧差和小波包分析算法的运动目标检测[J].计算机技术与发展,2008,(01):136.
 ZHANG Yu-rong,TU Zheng-zheng,LUO Bin.Moving Object Detection Method Based on Frame- Difference and Wavelet Packets Analysis[J].,2008,(05):136.
[2]郭旭 张丽杰.运动目标检测视频监控软件的设计与实现[J].计算机技术与发展,2010,(08):199.
 GUO Xu,ZHANG Li-jie.Design and Implementation of Moving Target Detection Video Surveillance Software[J].,2010,(05):199.
[3]夏伟才 曾致远.一种基于卡尔曼滤波的背景更新算法[J].计算机技术与发展,2007,(10):134.
 XIA Wei-cai,ZENG Zhi-yuan.Background Update Algorithm Based on Kalman Filtering[J].,2007,(05):134.
[4]王陈阳 周明全 耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,(04):21.
 WANG Chen-yang,ZHOU Ming-quan,GENG Guo-hua.Moving Object Detection Based on Adaptive Background Model[J].,2007,(05):21.
[5]侯宏录 李宁鸟 刘迪迪 陈杰.智能视频监控中运动目标检测的研究[J].计算机技术与发展,2012,(02):49.
 HOU Hong-lu,LI Ning-niao,LIU Di-di,et al.Research on Moving Target Detection of Intelligent Video Surveillance[J].,2012,(05):49.
[6]王天召,徐克虎,黄大山.动态背景下的运动目标检测[J].计算机技术与发展,2013,(07):104.
 WANG Tian-zhao,XU Ke-hu,HUANG Da-shan.Moving Object Detection under Dynamic Background[J].,2013,(05):104.
[7]黄景星,吴伟隆,龙楚君,等.基于OpenCV的视频运动目标检测及其应用研究[J].计算机技术与发展,2014,24(03):15.
 HUANG Jing-xing,WU Wei-long,Long Chu-jun,et al.Study of Moving Object Detection in Video and Its Application Based on OpenCV[J].,2014,24(05):15.
[8]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[9]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[10]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[11]杨磊,任衍允,蔡纪源. 一种基于深度数据的高斯模型运动目标检测方法[J].计算机技术与发展,2015,25(09):27.
 YANG Lei,REN Yan-yun,CAI Ji-yuan. A Gaussian Model Moving Target Detection Method Based on Depth Data[J].,2015,25(05):27.
[12]王俊[],王文中[][],汤进[][]. 基于几何投影的运动阴影去除方法[J].计算机技术与发展,2015,25(12):37.
 WANG Jun[],WANG Wen-zhong[][],TANG Jin[][]. A Moving Shadow Removal Method Based on Geometric Projection[J].,2015,25(05):37.
[13]祝加祥[],胡鹏程[],何璇[],等. 基于滑动窗非负矩阵分解的运动目标检测方法[J].计算机技术与发展,2017,27(01):20.
 ZHU Jia-xiang[],HU Peng-cheng[],HE Xuan[],et al. Moving Target Detection Method Based on Non-negative Matrix Factorization of Sliding Window[J].,2017,27(05):20.
[14]张应辉,刘养硕. 基于帧差法和背景差法的运动目标检测[J].计算机技术与发展,2017,27(02):25.
 ZHANG Ying-hui,LIU Yang-shuo. Moving Object Detection Based on Method of Frame Difference and Background Subtraction[J].,2017,27(05):25.
[15]李强[],陈光化[],余渊[]. 基于随机游走和混合高斯模型的运动目标检测[J].计算机技术与发展,2017,27(06):11.
 LI Qiang[],CHEN Guang-hua[],YU Yuan[]. Moving Target Detection Based on Random Walk and GaussianMixture Model[J].,2017,27(05):11.
[16]傅赟,王桂丽,周旭廷,等. 交通监控系统中视频运动目标检测算法研究[J].计算机技术与发展,2017,27(08):156.
 FU Yun,WANG Gui-li,ZHOU Xu-ting,et al. Investigation on Video Moving Target Detection Algorithm in Traffic Monitoring System[J].,2017,27(05):156.

更新日期/Last Update: 2016-09-19