[1]刘华春,候向宁,杨忠. 基于改进K均值算法的入侵检测系统设计[J].计算机技术与发展,2016,26(01):101-105.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Design of Intrusion Detection System Based on Improved K-means Algorithm[J].,2016,26(01):101-105.
点击复制

 基于改进K均值算法的入侵检测系统设计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年01期
页码:
101-105
栏目:
安全与防范
出版日期:
2016-01-10

文章信息/Info

Title:
 Design of Intrusion Detection System Based on Improved K-means Algorithm
文章编号:
1673-629X(2016)01-0101-05
作者:
 刘华春候向宁杨忠
 成都理工大学 工程技术学院
Author(s):
 LIU Hua-chunHOU Xiang-ningYANG Zhong
关键词:
 数据挖掘入侵检测聚类算法异常检测
Keywords:
data mining intrusion detection clustering algorithm anomaly detection
分类号:
TP393.08
文献标志码:
A
摘要:
 传统的入侵检测系统是将规则库与网络数据包逐一匹配,进行检测,当网络数据量巨增时,检测效率显著降低,甚至面临不能即时检测的巨大挑战。数据挖掘是从海量的数据中挖掘发现需要的各种有价值信息的技术,入侵检测系统中植入数据挖掘技术,将极大提高入侵检测系统的检测效率和智能性。研究了数据挖掘中 K - means 聚类算法应用于入侵检测领域中的难点问题。 K - means 算法具有易受初始 K 值和孤立点影响,难以确定 K 值,对初始质心依赖程度高等不足问题。针对上述缺点,提出了改进的 K - means 聚类算法。设计了基于改进 K - means 的入侵检测系统并进行了实验。结果表明,将改进的聚类算法应用于入侵检测可显著提高异常检测效率;可自适应地建立入侵检测异常模式库;对未知的入侵攻击能有效防范;能进一步降低误检率。
Abstract:
 Traditional intrusion detection system is matched to the rule base and network packet one by one. When the network is the huge increase in the amount of data,detection efficiency significantly reduces,even in the face of enormous challenges not immediately detec-ted. Data mining is a technology finds a variety of valuable information from the mass of data,data mining technology into the intrusion detection system will greatly improve efficiency and intelligence of this IDS. Focus on researching the K -means clustering algorithm in data mining for application to intrusion detection system. The K -means algorithm has some shortcomings,such as to be affected by the in-itial K value and outlier,difficulty of determining K value,highly depending on the initial center point. To overcome these disadvantages, an improved K -means clustering algorithm is proposed. And an intrusion detection system based on this is designed. The results show that the improved clustering algorithm is applied to intrusion detection,it can significantly improve the abnormality detection efficiency,and a-daptively establish the abnormal pattern database of intrusion detection,and effectively prevent the unknown intrusion and greatly reduce the false detection rate.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(01):113.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(01):145.
[12]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(01):45.
[13]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(01):234.
[14]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(01):83.
[15]牛永洁,薛苏琴. 基于PDFBox抽取学术论文信息的实现[J].计算机技术与发展,2014,24(12):61.
 NIU Yong-jie,XUE Su-qin. Realization of Extraction of Academic Papers Information Based on PDFBox[J].,2014,24(01):61.
[16]郑超,高茂庭,吴爱华. 基于RFID及其路径约束的生产检查流程控制[J].计算机技术与发展,2015,25(02):225.
 ZHENG Chao,GAO Mao-ting,WU Ai-hua. Production Testing Process Control Based on RFID with Path Constraint[J].,2015,25(01):225.
[17]顾伟[][],傅德胜[][],蔡玮[]. 基于命题逻辑的关联规则挖掘算法[J].计算机技术与发展,2015,25(03):91.
 GU Wei[][],FU De-sheng[][],CAI Wei[]. Association Rules Mining Algorithm Based on Propositional Logic[J].,2015,25(01):91.
[18]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(01):166.
[19]王晓鹏,武彤. 生产质量控制数据仓库模型设计与实现[J].计算机技术与发展,2015,25(06):181.
 WANG Xiao-peng,WU Tong. Design and Realization of Data Warehouse Model on Production Quality Control[J].,2015,25(01):181.
[20]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(01):53.

更新日期/Last Update: 2016-04-12