[1]梁天超[][],荆晓远[],姚永芳[],等. 基于加权RFE-Bayes方法的软件缺陷预测模型[J].计算机技术与发展,2015,25(10):131-134.
 LIANG Tian-chao[][],JING Xiao-yuan[],YAO Yong-fang[],et al. A Prediction Model for Software Defect Based on Weighted RFE-Bayes[J].,2015,25(10):131-134.
点击复制

 基于加权RFE-Bayes方法的软件缺陷预测模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年10期
页码:
131-134
栏目:
智能、算法、系统工程
出版日期:
2015-10-10

文章信息/Info

Title:
 A Prediction Model for Software Defect Based on Weighted RFE-Bayes
文章编号:
1673-629X(2015)10-0131-04
作者:
 梁天超[1][2]荆晓远[2] 姚永芳[2] 董西伟[2]
1. 南京邮电大学 计算机学院;2.南京邮电大学 自动化学院
Author(s):
 LIANG Tian-chao[1][2] JING Xiao-yuan[2] YAO Yong-fang[2] DONG Xi-wei[2]
关键词:
 软件缺陷特征选择朴素贝叶斯缺陷预测
Keywords:
 software defectfeature selectionNaive Bayesdefect prediction
分类号:
TP31
文献标志码:
A
摘要:
 近年来,软件缺陷预测逐渐成为软件工程领域的重要内容。很多典型的机器学习方法已经被应用到软件缺陷预测中,包括SVM、随机森林、决策树和朴素贝叶斯等。早期的研究工作对所有软件产品采取相同的特征提取方式,分类效果并不理想。后来一些特征选择方法被提出,比如基于启发试的回归特征消除方法已经成功与SVM方法结合起来,取得了较好的效果。文中在现有工作基础上借鉴了RFE(回归特征消除)的思想,考虑到朴素贝叶斯方法在处理小样本分类问题时的优越性,首次将RFE与朴素贝叶斯方法结合起来,利用贝叶斯模型的特性在特征选择后将特征权值应用到对分类决策的改进中,进一步提高了分类器性能。实验采用NASA的软件缺陷数据集,并对比了其他效果较好的分类算法,体现了该算法的优越性和有效性。
Abstract:
 In recent years,software defect prediction is becoming an important part of the software engineering field. Many typical meth-ods like SVM,random forest,decision trees and Bayes have been applied to software defect prediction. However,earlier research almost takes the same feature set to train all kinds of software products and does not achieve a desired effect. Years later,some feature selection method are proposed. For example,the method combined recursive feature elimination and SVM,has got a good effect. In this paper, based on existing work,propose an algorithm which combines recursive feature elimination and Native Bayes. This algorithm will do a se-lection of feature set before training the model according to the contribution of each feature to get the optimal feature subset to be the in-put to train the model. The experiment adopts the software defect data set of NASA. Make a comparison with other machine learning methods,the experimental results demonstrate the superiority and effectiveness of this method.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.
[11]哈清华,姜瑞凯,刘逻.软件缺陷的生成因素分析[J].计算机技术与发展,2016,26(01):1.
  Analysis of Forming Factors in Software Defect[J].,2016,26(10):1.

更新日期/Last Update: 2015-11-13