[1]文必龙,段炼,汪志群,等. 基于语料库和规则库的石油本体自动构建研究[J].计算机技术与发展,2015,25(09):209-212.
 WEN Bi-long,DUAN Lian,WANG Zhi-qun,et al. Research on Automatic Construction of Petroleum Domain Ontology Based on Corpus and Rule Base[J].,2015,25(09):209-212.
点击复制

 基于语料库和规则库的石油本体自动构建研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年09期
页码:
209-212
栏目:
应用开发研究
出版日期:
2015-09-10

文章信息/Info

Title:
 Research on Automatic Construction of Petroleum Domain Ontology Based on Corpus and Rule Base
文章编号:
1673-629X(2015)09-0209-04
作者:
 文必龙段炼汪志群李云静王琪超
 东北石油大学 计算机与信息技术学院
Author(s):
 WEN Bi-long DUAN LianWANG Zhi-qun LI Yun-jingWANG Qi-chao
关键词:
 语料库规则库领域本体本体自动构建
Keywords:
 corpusrule basedomain ontologyontology automatic construction
分类号:
TP391.1
文献标志码:
A
摘要:
 石油领域文本所蕴含的信息丰富但其数目繁多复杂,现有大多数本体都是通过手工构建的,这种方法难以方便快捷地抽取文本信息,难以构建一个较完善的石油领域本体。为提高本体构建的效率,文中综述了本体的主要概念,分析了本体构建的一般原则和方法。利用文本处理软件对文本进行分词处理,生成特征词集并对其进行缩减,利用Petro-Onto方法实现语料库的构建,提出了基于语料库和规则库区分概念、属性并抽取它们之间关系的方法。该方法能大大提高本体的构建效率,并在一定程度上保证结果本体的质量,达到了本体自动建立的目的。
Abstract:
 Texts of petroleum domain contain rich but numerous and complex information,and most existing ontology are built by manu-al. But this method is difficult to extract information in text conveniently and rapidly and build a complete text of petroleum domain. In order to improve the efficiency of building ontology,sum up the main concept of ontology and analyze the general principles and meth-ods. Use text processing software to segment words and generate feature word set,then shrinking them. Through building corpus through Petro-Onto,propose a method based on distinguishing concepts and attributes of corpus and rule base and extract the relationships be-tween them. This method can greatly improve the efficiency of building ontology and can guarantee the quality of the result of ontology, and eventually achieve the purpose of building text automatically.

相似文献/References:

[1]刘粤钳 姚红玉.一类基于平行语料统计的汉法机译解决方案[J].计算机技术与发展,2008,(04):114.
 LIU Yue-qian,YAO Hong-yu.A Novel Solution to Chinese-French Machine Translation Based on Aligned Corpus[J].,2008,(09):114.
[2]魏凯斌 冉延平 余牛.语义相似度的计算方法研究与分析[J].计算机技术与发展,2010,(07):102.
 WEI Kai-bin,RAN Yan-ping,YU Niu.The Research and Analysis of Computing Methods on Semantic Similarity[J].,2010,(09):102.
[3]孙超 张仰森.面向综合语言知识库的知识融合与获取研究[J].计算机技术与发展,2010,(08):25.
 SUN Chao,ZHANG Yang-sen.Research of Knowledge Integration and Obtaining Oriented Comprehensive Language Knowledge System[J].,2010,(09):25.
[4]吴琴霞 高峰 刘永革.基于XML语言甲骨文语料库元数据抽取的研究[J].计算机技术与发展,2012,(05):216.
 WU Qin-xia,GAO Feng,LIU Yong-ge.Study of Oracle Bone Inscriptions Corpus Metadata Extraction Based on XML[J].,2012,(09):216.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.

更新日期/Last Update: 2015-10-16