[1]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152-155.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(08):152-155.
点击复制

 基于DSNPP算法的社交网络隐私保护方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
152-155
栏目:
安全与防范
出版日期:
2015-08-10

文章信息/Info

Title:
 Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm
文章编号:
1673-629X(2015)08-0152-04
作者:
 张付霞蒋朝惠
 贵州大学 计算机科学与技术学院
Author(s):
 ZHANG Fu-xiaJIANG Chao-hui
关键词:
 社交网络隐私保护密度聚类真实节点泛化
Keywords:
 social networksprivacy preservationdensity clusteringreal nodesgeneralization
分类号:
TP309.2
文献标志码:
A
摘要:
 社交网络发展迅速,数据发布过程中存在的一个重要安全隐患就是隐私泄露。针对目前大多数社交网络隐私保护研究存在的“人员属性隐私保护”和“社区结构保护”之间没有实现真正结合的问题,就两者综合考虑,提出一种基于密度聚类算法的社交网络隐私保护方法( Density for Social Network Privacy-Preserving,DSNPP)。该算法通过对节点进行密度聚类分析,得到任意形状的簇,采用对簇内节点进行泛化、在簇内插入真实节点、增加相应边等技术来保护节点的信息和节点之间的关系信息,从而实现了人员属性隐私保护和社区结构保护两方面的真正结合。最后,通过实验表明,与p-Sen-sitive k-匿名算法、GSNPP算法相比,该算法信息丢失量上优势明显,可以获得更高的隐私保护。
Abstract:
 With the rapid development of social network,an important safety hazard that exists in the process of data publishing is leak-age. For the questions that most researches on social network privacy protection do not realize existence of protecting privacy in property and community structures,considering the both,propose a method of social networking privacy,Density for Social Network Privacy-Pre-serving ( DSNPP) . The algorithm is based on density clustering method,which gets clusters in arbitrary shape through nodes cluster anal-ysis,and it uses the technology of generalizing cluster nodes,inserting the real nodes in the cluster,increasing corresponding edges and so on to protect information of nodes and the relationship between nodes,which achieves purpose of social networks privacy protection. Fi-nally,compared with p-Sensitive k-anonymous algorithm and GSNPP algorithm,the algorithm has the advantage in the amount of infor-mation loss,and it can obtain higher privacy protection.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.
[11]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(08):6.
[12]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(08):31.
[13]余莎莎[],王友国[],朱亮[]. 基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Research on Online Business Rumors Transmission Based on an Improved SIR Model[J].,2016,26(08):195.
[14]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(08):6.
[15]付明明,余莎莎,应志领. 在线社交网络的双谣言模型研究[J].计算机技术与发展,2017,27(09):53.
 FU Ming-ming,YU Sha-sha,YING Zhi-ling. Research on Double Rumor Model in Online Social Network[J].,2017,27(08):53.
[16]李旗旗,徐敏. 社交网络中的链路预测方法改进[J].计算机技术与发展,2017,27(11):37.
 LI Qi-qi,XU Min. Improvement of Link Prediction Method in Social Networks[J].,2017,27(08):37.

更新日期/Last Update: 2015-09-14