[1]沈德海,张龙昌,鄂旭,等. 基于多子窗口的混合噪声滤波算法[J].计算机技术与发展,2015,25(06):69-72.
 SHEN De-hai,ZHANG Long-chang,E Xu,et al. A Mixture Noise Filter Algorithm Based on Multiple Sub-windows[J].,2015,25(06):69-72.
点击复制

 基于多子窗口的混合噪声滤波算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年06期
页码:
69-72
栏目:
智能、算法、系统工程
出版日期:
2015-06-10

文章信息/Info

Title:
 A Mixture Noise Filter Algorithm Based on Multiple Sub-windows
文章编号:
1673-629X(2015)06-0069-04
作者:
 沈德海张龙昌鄂旭侯建
 渤海大学 信息科学与技术学院
Author(s):
 SHEN De-hai ZHANG Long-chang E Xu HOU Jian
关键词:
 多子窗口高斯噪声多级中值滤波椒盐噪声混合噪声滤波算法
Keywords:
 multiple sub-windowsGaussian noisemultistage median filteringsalt-pepper noisemixture noise filter method
分类号:
TP391.41
文献标志码:
A
摘要:
 为了去除数字图像中混有的高斯噪声和椒盐噪声,提出了一种基于多子窗口的去混合噪声算法。算法借鉴多级中值滤波思想,先将滤波窗口划分为纵横交叉的多个子窗口。对于椒盐噪声,先统计各子窗口内非噪声点的个数,如果为奇数,求出各子窗口非噪声点的中值;如果为偶数,计算各子窗口非噪声点的均值,然后用这些值的中值替换噪声点。对于高斯噪声,算法采用多子窗口均值法进行滤波,用各子窗口均值的均值替换噪声点。实验证明,该算法对混合噪声具有较好的滤波效果,且有效地保持了图像中的细节信息。
Abstract:
 To filter out the Gaussian noise and salt and pepper noise in the digital image,a mixture noise filter method based on multiple sub-windows is presented. The algorithm references multistage median filter theory,divides the filter window into vertical and horizontal cross sub windows firstly. For salt and pepper noise,statistics the number of the non-noise points,if the number is odd,calculating the median of all non-noise points in every sub-window,if the number is even,calculating the mean of all non-noise points in every sub-window or mean of all non extreme pixels,and then replace the noise pixels with the median of above median or mean. For the Gaussian noise,algorithm uses multiple sub-windows mean filtering,applying the mean of the all means of the very sub-window to replace the noise point. Experiments show that the algorithm has the better filtering effect for mixed noise,and keep the image details effectively.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2015-07-27