[1]张亚亚,张立民,刘小伟,等. 基于语义网的遥感图像分类[J].计算机技术与发展,2015,25(05):218-223.
 ZHANG Ya-ya,ZHANG Li-min,LIU Xiao-wei,et al. Remote Sensing Image Classification Based on Semantic-net[J].,2015,25(05):218-223.
点击复制

 基于语义网的遥感图像分类()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
218-223
栏目:
应用开发研究
出版日期:
2015-05-10

文章信息/Info

Title:
 Remote Sensing Image Classification Based on Semantic-net
文章编号:
1673-629X(2015)05-0218-06
作者:
 张亚亚张立民刘小伟徐涛
 海军航空工程学院 电子信息工程系
Author(s):
 ZHANG Ya-ya ZHANG Li-min LIU Xiao-wei XU Tao
关键词:
 语义解译基于知识隶属度函数InterIMAGE系统区域匹配遥感图像
Keywords:
 semantics interpretation knowledge based membership functions InterIMAGE system region match remote sensing images
分类号:
TP391
文献标志码:
A
摘要:
 为充分利用遥感图像的先验知识,提高地物信息提取的效率,针对以往低分辨率遥感图像基于像素知识分类出现的问题,提出了一种基于对象的语义网的遥感图像知识分类框架。通过利用语义网络表示地物种类之间的层次关系,研究地物种类的特征属性,通过多种属性集共同描述对象,研究基于模糊隶属度函数的图像对象及其概念的匹配程度,对图像进行精确分类。在InterIMAGE系统中的仿真实验结果表明,通过与人工解译的真值图进行对比,该方法在不需要特定提供样本的情况下,有效提高了地物信息提取的效率和准确度。
Abstract:
 For full use of priori knowledge for remote sensing images to improve the efficiency of land cover information extraction,in view of the problem on low-resolution remote sensing images on pixel knowledge-based classification,present a remote sensing image knowledge classification framework of semantic-net based on the object. Using semantic network to represent the land cover categories hierarchical relationship,research the feature of land cover categories,and by multi-attribute sets to describe the objects,study the matc-hing degree of image objects and concepts based on fuzzy membership function to interpret image. Simulation results on InterIMAGE sys-tem show that the method has improved the efficiency and accuracy in the case of without special samples,compared with the manual in-terpretation of the ground truth image .

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2015-07-27