[1]陈志凡[],单剑锋[],宋晓涛[],等. 基于PSO-LSSVM的模拟电路故障诊断[J].计算机技术与发展,2015,25(05):209-213.
 CHEN Zhi-fan[],SHAN Jian-feng[],SONG Xiao-tao[],et al. Analog Circuit Fault Diagnosis Based on PSO-LSSVM[J].,2015,25(05):209-213.
点击复制

 基于PSO-LSSVM的模拟电路故障诊断()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
209-213
栏目:
应用开发研究
出版日期:
2015-05-10

文章信息/Info

Title:
 Analog Circuit Fault Diagnosis Based on PSO-LSSVM
文章编号:
1673-629X(2015)05-0209-05
作者:
 陈志凡[1] 单剑锋[1] 宋晓涛[2] 王文清[1]
 1.南京邮电大学 电子科学与工程学院;2.太原理工大学 计算机科学与技术学院
Author(s):
 CHEN Zhi-fan[1] SHAN Jian-feng[1] SONG Xiao-tao[2] WANG Wen-qing[1]
关键词:
 粒子群算法最小二乘支持向量机模拟电路故障诊断
Keywords:
 particle swarm optimization least square support vector machine analog circuit fault diagnosis
分类号:
TP206.3
文献标志码:
A
摘要:
 针对传统神经网络技术在模拟电路故障诊断应用中存在的问题,提出了一种基于粒子群( Particle Swarm Optimiza-tion,PSO)和最小二乘支持向量机( Least Squares Support Vector Machine,LSSVM)的模拟电路故障诊断方法。该方法先从一个滤波器系统的频率响应数据中提取由小波系数的均值、标准差和熵构成的频率小波特征向量来训练最小二乘支持向量机,之后再采用粒子群算法来优化支持向量机的结构参数,避免了参数选择的盲目性,进而提高了模型的诊断精度。在对Elliptical Filter电路进行的故障检测中,验证了该方法的可行性。
Abstract:
 In order to solve the problem of fault diagnosis method for analog IC diagnosis based on neural network,the method based on Particle Swarm Optimization ( PSO) and Least Squares Support Vector Machine ( LSSVM) is proposed. Use wavelet feature vectors from frequency response data of a filter system which are composed of the mean,standard deviation and entropy of wavelet coefficients to train LSSVM. The parameters of LSSVM are optimized with PSO algorithm to improve the accuracy of fault diagnosis,avoiding the blindness of parameters selection. The Elliptical Filter is used for the faults simulation experiment,the results demonstrated feasibility of the pro-posed method.

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(05):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(05):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(05):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(05):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(05):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(05):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(05):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(05):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(05):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(05):114.
[11]杨思燕[],陈为胜[]. 基于数据同化的图像融合方法研究[J].计算机技术与发展,2014,24(11):69.
 YANG Si-yan[],CHEN Wei-sheng[]. Research on Image Fusion Method Based on Data Assimilation[J].,2014,24(05):69.
[12]李锋. 粒子群模糊聚类算法在入侵检测中的研究[J].计算机技术与发展,2014,24(12):138.
 LI Feng. Research on Fuzzy Clustering Algorithm Based on PSO in IDS[J].,2014,24(05):138.
[13]刘慧慧. 一种改进的粒子群多目标优化算法研究[J].计算机技术与发展,2015,25(01):87.
 LIU Hui-hui. Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm[J].,2015,25(05):87.
[14]侯翔,廖小平. 基于PSO算法的洪水预报模型研究[J].计算机技术与发展,2015,25(04):200.
 HOU Xiang,LIAO Xiao-ping. Research on Flood Forecasting Model Based on PSO[J].,2015,25(05):200.
[15]胡天骐[],单剑锋[],宋晓涛[]. 基于改进PSO-LSSVM的模拟电路诊断方法[J].计算机技术与发展,2015,25(06):193.
 HU Tian-qi[],SHAN Jian-feng[],SONG Xiao-tao[]. Analog Circuit Fault Diagnosis Method Based on PSO-LSSVM[J].,2015,25(05):193.
[16]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(05):14.
[17]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(05):56.
[18]李策,王保云,高浩. 基于自适应粒子群算法的特征选择[J].计算机技术与发展,2017,27(04):89.
 LI Ce,WANG Bao-yun,GAO Hao. Feature Selection Based on Adaptive Particle Swarm Optimization[J].,2017,27(05):89.
[19]邱东,刘明硕,郭红涛. 基于粒子群算法的低碳铬铁磷含量预测研究[J].计算机技术与发展,2017,27(06):142.
 QIU Dong,LIU Ming-shuo,GUO Hong-tao. Investigation on Prediction of Phosphorus Content of Low Carbon Ferrochrome with Particle Swarm Optimization[J].,2017,27(05):142.
[20]梅朵[],郑黎黎[],刘春晓[],等. 基于混合算法优化SVM的短时交通流预测[J].计算机技术与发展,2017,27(11):92.
 MEI Duo[],ZHENG Li-li[],LIU Chun-xiao[],et al. A Short-term Traffic Flow Prediction Model Based on Support Vector Machine Optimized by Hybrid Algorithm[J].,2017,27(05):92.

更新日期/Last Update: 2015-07-27