[1]袁武,任勋益. 水平分割数据的保护隐私聚类挖掘方法研究[J].计算机技术与发展,2015,25(05):115-117.
 YUAN Wu,REN Xun-yi. Research on Privacy Preserving Clustering Method for Horizontal Partitioned Data[J].,2015,25(05):115-117.
点击复制

 水平分割数据的保护隐私聚类挖掘方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
115-117
栏目:
安全与防范
出版日期:
2015-05-10

文章信息/Info

Title:
 Research on Privacy Preserving Clustering Method for Horizontal Partitioned Data
文章编号:
1673-629X(2015)05-0115-03
作者:
 袁武任勋益
 南京邮电大学 计算机学院
Author(s):
 YUAN WuREN Xun-yi
关键词:
 隐私保护同态加密水平分割数据聚类挖掘K-means算法
Keywords:
 privacy preservinghomomorphic encryptionhorizontally partitioned data clustering miningK-means algorithm
分类号:
TP301
文献标志码:
A
摘要:
 随着大数据时代的到来,数据共享在商业、政府和其他机构之间日渐频繁,如何保护各参与方的数据隐私成为亟待解决的问题。文中针对水平划分的数据容易产生的各参与方数据隐私泄露,共谋攻击和分布式、准诚信、大数据的挖掘环境中的新特点,提出了一种保护隐私的聚类挖掘算法。该方法结合RSA公钥加密技术和同态加密技术等密码学方法的优势,能够在不降低挖掘精度的前提下,保护各参与方的数据隐私。分析表明,它能够保证挖掘结果的安全性、有效性和正确性。
Abstract:
 Due to the advent of big data age,data sharing between business,governments and other parties is more and more frequent. Pri-vacy preserving has become an important issue in data mining. In this paper,in view of horizontally partitioned data is easy to produce the parties data privacy,collusion attack and new features of distributed,semi-honest partner,big data mining in the environment,propose a clustering mining method to protect the privacy. Combined the advantages of RSA public key cryptosystem, homomorphic encryption scheme and other cryptograph methods,can preserve the privacy of all parties on the premise of not reducing the mining accuracy. The theoretical analysis shows that this method can guarantee the security,validity and correctness for result.

相似文献/References:

[1]耿波 仲红 徐杰 闫娜娜.隐私保护的关联规则挖掘研究[J].计算机技术与发展,2009,(02):81.
 GENG Bo,ZHONG Hong,XU Jie,et al.Study on Privacy- Preserving Association Rule Mining[J].,2009,(05):81.
[2]张瑞 郑诚 陈娟娟.关联规则挖掘中的隐私保护研究[J].计算机技术与发展,2008,(10):13.
 ZHANG Rui,ZHENG Cheng,CFIEN Juan-juan.Research on Privacy Preserving in Association Rules Mining[J].,2008,(05):13.
[3]李玲娟 郑少飞.基于数据处理的数据挖掘隐私保护技术分析[J].计算机技术与发展,2011,(03):94.
 LI Ling-juan,ZHENG Shao-fei.Analysis of Data Mining Privacy Preserving Technology Based on Data Processing[J].,2011,(05):94.
[4]杜定宇 王茜.一种基于中间代理的个性化推荐系统[J].计算机技术与发展,2011,(09):66.
 DU Ding-yu,WANG Qian.An Agent-Based Personalized Recommendation System[J].,2011,(05):66.
[5]杨宸 薛丹 周健.带空间特性的访问控制在汽车终端上的应用[J].计算机技术与发展,2012,(01):225.
 YANG Chen,XUE Dan,ZHOU Jian.Application of Role-Based Access Control with Spatial Character in Automobile Terminal[J].,2012,(05):225.
[6]韦琳 许峰.医疗网格隐私保护技术研究[J].计算机技术与发展,2012,(05):254.
 WEI Lin,XU Feng.Privacy Preservation in Heaithgrid:A Survey[J].,2012,(05):254.
[7]赵丹 杨庚.一种基于复数域的数据融合完整性保护算法[J].计算机技术与发展,2012,(08):150.
 ZHAO Dan,YANG Geng.A Complex Field-based Integrity-protecting Data Aggregation Algorithm[J].,2012,(05):150.
[8]吴婷婷,李玲娟.面向 RFID 的位置隐私保护算法研究[J].计算机技术与发展,2013,(01):157.
 WU Ting-ting,LI Ling-juan.Study on RFID-oriented Location Privacy Protection Algorithm[J].,2013,(05):157.
[9]梁庆庆,杨庚.一种低通信量的数据融合隐私保护算法[J].计算机技术与发展,2013,(08):133.
 LIANG Qing-qing,YANG Geng.A Low_traffic Privacy-preserving Aggregation Algorithm[J].,2013,(05):133.
[10]张燕,曹晓梅.基于隐私保护的非线性安全数据融合方案[J].计算机技术与发展,2013,(09):114.
 ZHANG Yan,CAO Xiao-mei.Nonlinear Secure Data Aggregation Scheme Based on Privacy Protection[J].,2013,(05):114.
[11]杨明慧[] [],刘孟占[],邹翔[][],等. 德国eID机制对我国网络身份管理的启示[J].计算机技术与发展,2014,24(07):157.
 YANG Ming-hui[][],LIU Meng-zhan[] ZOU Xiang[][],WANG Zhi-peng[][],et al. Reference of Germany eID Mechanism for China Network Identity Management[J].,2014,24(05):157.
[12]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(05):152.
[13]肖洁,袁嵩,谭天. 大数据时代数据隐私安全研究[J].计算机技术与发展,2016,26(05):91.
 XIAO Jie,YUAN Song,TAN Tian. Research on Data Privacy in Big Data Age[J].,2016,26(05):91.
[14]周红亚,张倩. 基于非可信用户的P2P加密位置隐私保护[J].计算机技术与发展,2016,26(05):104.
 ZHOU Hong-ya,ZHANG Qian. Location Privacy Preservation in Mobile P2P Encryption Based on Non-trusted Users[J].,2016,26(05):104.
[15]陈春玲,熊晶,陈琳,等. 加权社会网络中的个性化隐私保护算法[J].计算机技术与发展,2016,26(08):88.
 CHEN Chun-ling,XIONG Jing,CHEN Lin,et al. Personalized Privacy Preservation Algorithm in Weighted Social Networks[J].,2016,26(05):88.
[16]姚禹丞,宋玲,鄂驰. 同态加密的分布式K均值聚类算法研究[J].计算机技术与发展,2017,27(02):81.
 YAO Yu-cheng,SONG Ling,E Chi. Investigation on Distributed K-means Clustering Algorithm of Homomorphic Encryption[J].,2017,27(05):81.
[17]陈煜,李玲娟.一种基于决策树的隐私保护数据流分类算法[J].计算机技术与发展,2017,27(07):111.
 CHEN Yu,LI Ling-juan. A Decision Tree-based Privacy Preserving Classification Mining Algorithm for Data Streams[J].,2017,27(05):111.
[18]汪海伟,杨庚,刘国秀,等. 可搜索数据库加密系统的设计与实现[J].计算机技术与发展,2017,27(08):130.
 WANG Hai-wei,YANG Geng,LIU Guo-xiu,et al. Design and Implementation of Searchable Database Encryption System[J].,2017,27(05):130.
[19]高瑜[][],田丰[],吴振强[][]. 基于差分隐私保护的DPk-medoids聚类算法[J].计算机技术与发展,2017,27(10):117.
 GAO Yu[][],TIAN Feng[],WU Zhen-qiang[][]. A DPk-medoids Clustering Algorithm with Differential Privacy Protection[J].,2017,27(05):117.

更新日期/Last Update: 2015-07-09