[1]郝杰,任静. 高超声速飞行器交互式多模型跟踪算法仿真[J].计算机技术与发展,2015,25(02):204-206.
 HAO Jie,REN Jing. Tracking Algorithm Simulation of Interactive Multiple Model for Hypersonic Flight Vehicle[J].,2015,25(02):204-206.
点击复制

 高超声速飞行器交互式多模型跟踪算法仿真()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
204-206
栏目:
应用开发研究
出版日期:
2015-02-10

文章信息/Info

Title:
 Tracking Algorithm Simulation of Interactive Multiple Model for Hypersonic Flight Vehicle
文章编号:
1673-629X(2015)02-0204-03
作者:
 郝杰任静
 西安航空学院
Author(s):
 HAO JieREN Jing
关键词:
 高超声速飞行器交互式多模型自适应目标跟踪
Keywords:
 hypersonic aircraft interactive multiple model adaptive target tracking
分类号:
TN957.51
文献标志码:
A
摘要:
 针对临近空间高超声速飞行器的运动状态多变,目前单一跟踪模型已经很难描述出目标的特性,根据多变的运动特点,将交互式多模型( IMM)算法应用于高超声速飞行器跟踪领域。该算法可以有效地根据各个模型的概率进行准确的调整,特别是对于机动目标的跟踪。文中根据IMM算法在临近空间环境下对高超声速飞行器进行了跟踪仿真。通过Monte-Carlo仿真,结果表明该算法在临近空间中具有较好的跟踪精度,同时可以提高高速飞行目标的跟踪精度。
Abstract:
 In view of the features that motion state of near space hypersonic vehicle is variable,the single track model has been very diffi-cult to describe the characteristic of target,according to the changeable motion characteristics,the Interacting Multiple Model ( IMM) al-gorithm is applied to the hypersonic vehicle tracking field. The algorithm can be effective for accurate adjustment according to the proba-bility of each model,especially for maneuvering target tracking. According to the IMM algorithm,the tracking simulation is carried out under the hypersonic vehicle in near space environment in this paper. Through Monte-Carlo simulation,the result shows that the algo-rithm has better tracking precision in near space,and can improve the high-speed flight target tracking accuracy.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.
[11]季陈晨,陆宇平,刘燕斌. 面向控制的高超声速飞行器分布式优化设计[J].计算机技术与发展,2015,25(07):142.
 JI Chen-chen,LU Yu-ping,LIU Yan-bin. Design of Control-oriented Decentralized Optimization for Hypersonic Vehicle[J].,2015,25(02):142.

更新日期/Last Update: 2015-04-30