[1]蒋翠清,邵宏波. 基于MFCC与改进ACF的汽车声音识别算法研究[J].计算机技术与发展,2015,25(02):140-143.
 JIANG Cui-qing,SHAO Hong-bo. Research on Vehicle Audio Recognition Algorithm Based on MFCC and Improved ACF[J].,2015,25(02):140-143.
点击复制

 基于MFCC与改进ACF的汽车声音识别算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
140-143
栏目:
安全与防范
出版日期:
2015-02-10

文章信息/Info

Title:
 Research on Vehicle Audio Recognition Algorithm Based on MFCC and Improved ACF
文章编号:
1673-629X(2015)02-0140-04
作者:
 蒋翠清邵宏波
 合肥工业大学 管理学院
Author(s):
 JIANG Cui-qingSHAO Hong-bo
关键词:
 汽车声音识别梅尔倒谱系数自相关函数高斯混合模型
Keywords:
 vehicle audio recognitionMFCCACFGaussian mixture model
分类号:
TP18
文献标志码:
A
摘要:
 汽车声音识别是汽车声源定位等研究的基础,对交通事故鉴定、犯罪举证和犯罪现场还原等具有重要意义。现有汽车声音识别算法存在算法复杂度高和识别率相对较低等问题。针对现行问题,将以梅尔倒谱系数( MFCC)特征与自相关函数(ACF)方差作为混合特征的汽车声音识别算法应用到汽车声音识别系统中。该算法使用高斯混合模型(GMM)进行汽车声音建模和识别,获得比MFCC特征及其一阶差分特征组成的混合特征更好的识别效果。并通过仿真实验证明了该算法的有效性。
Abstract:
 Vehicle audio recognition is the foundation of vehicle sound source localization and other automotive research,it is very impor-tant for traffic accidents identification,crime scene evidence and crime reduction. The problem of high computational complexity and rela-tively low recognition rate has existed in current vehicle audio recognition. Concerning those problems above,the vehicle recognition algo-rithm taking Mel-Frequency Cepstrum Coefficients and improved Auto-Correlation Function as hybrid feature is applied in the vehicle audio recognition system. Modeling and classifying by the Gaussian Mixture Model,this feature vector outperforms MFCC and Differenti-al MFCC features in recognition. The simulation results prove the effectiveness of the proposed algorithm.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(02):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(02):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(02):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(02):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(02):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(02):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(02):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(02):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(02):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(02):47.

更新日期/Last Update: 2015-04-28