[1]高建[],杨刚[]. 基于FLST变换的多尺度面状地物提取方法[J].计算机技术与发展,2014,24(12):167-171.
 GAO Jian[],YANG Gang[]. Multi-scale Extraction Method of Area Feature Based on FLST[J].,2014,24(12):167-171.
点击复制

 基于FLST变换的多尺度面状地物提取方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
167-171
栏目:
应用开发研究
出版日期:
2014-12-10

文章信息/Info

Title:
 Multi-scale Extraction Method of Area Feature Based on FLST
文章编号:
1673-629X(2014)12-0167-05
作者:
 高建[1]杨刚[2]
 1.南京邮电大学 地理与生物信息学院;2.山东省郓城煤矿
Author(s):
 GAO Jian[1]YANG Gang[2]
关键词:
 快速水平集变换水平集Min/Max流面状地物提取多尺度
Keywords:
 FLSTlevel set Min/Max flowarea feature extraction multi-scale
分类号:
P237
文献标志码:
A
摘要:
 提出了一种基于快速水平集变换( FLST)的多尺度面状地物提取方法。该方法利用FLST变换将图像分解为灰度水平集,面状体物由于在空间分布和灰度值上的相近,其相关信息很容易整体转移到水平集内;通过一种水平线Min/Max流方法对包含地物信息的形状进行多尺度边缘平滑处理,滤除图像中的细节信息,保持面状地物轮廓基本不变;最后进行重构图像,重构结果具有灰度分布分片恒定的特点,很容易从图像中获取目标地物的分布情况。对遥感影像中的典型面状地物,如农田、水域、积雪等,使用该方法进行了地物提取实验,提取结果与人工方法提取相比,其精确度均达到了90%以上。
Abstract:
 A method of multi-scale area features extracting based on Fast Level Set Transformation ( FLST) is proposed. An image is de-composed into gray level sets by FLST and the area features are transferred to level sets integrally for the sake of adjacency on spatial dis-tribution and gray scales. Edges of shapes containing feature information are smoothed by a level-line Min/Max flow on different scales for removing details and preserving area features,then the reconstructed image is piecewise constant on gray scales. It is convenient to fetch information of area features from resultant image. Relative experiments are carried out on remote sensing images for farmlands,water areas and snow covers,whose result compared with that of artificial extraction shows that the precisions are all greater than 90 percenta-ges.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.

更新日期/Last Update: 2015-04-15