[1]孙向荣,刘芳芳. 图像修复TV模型的快速算法研究[J].计算机技术与发展,2014,24(11):144-147.
 SUN Xiang-rong,LIU Fang-fang. Research on Fast Algorithm of Image Inpainting Total Variational Model[J].,2014,24(11):144-147.
点击复制

 图像修复TV模型的快速算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
144-147
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Research on Fast Algorithm of Image Inpainting Total Variational Model
文章编号:
1673-629X(2014)11-0144-04
作者:
 孙向荣刘芳芳
 南京邮电大学 理学院
Author(s):
 SUN Xiang-rongLIU Fang-fang
关键词:
 变分方法偏微分方程图像修复交替方向乘子算法快速傅里叶变换
Keywords:
 variation approachPDEsimage inpaintingalternating direction method of multipliersfast Fourier transform
分类号:
TP301.6
文献标志码:
A
摘要:
 关于图像修复的全变分( TV)模型的求解有很多方法。在图像修复的全变分( TV)模型中,文中针对含有非光滑项的凸优化问题提出了一种基于交替方向乘子法( ADMM)的快速求解算法。 ADMM方法对迭代公式中具体的子问题求解过程一般采用Gauss-Seidel方法,文中通过分析TV修复模型的性质,对ADMM算法进行了相应的改进,使得具体的数值求解可以用快速傅里叶变换方法,并证明了该算法的收敛性。实验结果表明,文中所提出的新算法与采用Gauss-Seidel迭代的方法相比较,不但修复效果更好,而且修复速度更快。
Abstract:
 There are many ways in solving the Total Variation ( TV) model for image inpainting. For total variation model of image in-painting which contains non-smooth convex optimization problems,a fast solving algorithm on Alternating Direction Method of Multipli-ers ( ADMM) is presented. Generally,the Gauss-Seidel method is usually used for iterative formula in specific sub-problems. In this pa-per,by analyzing the feature of TV model,improve the ADMM,so that can use the fast Fourier transform methods to solve specific prob-lems. Then the convergence of the algorithm is proved. Experimental results show that the new algorithm presented in this paper is not on-ly better in inpainting,but also faster.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.
[11]张哲,张化朋. 一种基于偏微分方程变分去噪模型[J].计算机技术与发展,2014,24(11):103.
 ZHANG Zhe,ZHANG Hua-peng. An Denoising Model of Variation Based on PDE[J].,2014,24(11):103.

更新日期/Last Update: 2015-04-14