[1]孙吉红[][],张丽莲[] [],武尔维[][],等. 基于智能算法的价格预测模型探究[J].计算机技术与发展,2014,24(11):107-109.
 SUN Ji-hong[][],ZHANG Li-lian[][],WU Er-wei[][],et al. Research on Price Prediction Model Based on Intelligent Algorithm[J].,2014,24(11):107-109.
点击复制

 基于智能算法的价格预测模型探究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
107-109
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Research on Price Prediction Model Based on Intelligent Algorithm
文章编号:
1673-629X(2014)11-0107-03
作者:
 孙吉红[1][2] 张丽莲[2] [3]武尔维[2][3]郜鲁涛[2][3] 彭琳[2] [3]钱晔[2][3]
 1.云南农业大学 园林园艺学院;2.云南农业大学 云南省高校农业信息技术重点实验室;3.云南农业大学 基础与信息工程学院
Author(s):
 SUN Ji-hong[1][2] ZHANG Li-lian[2][3]WU Er-wei[2][3]GAO Lu-tao[2][3]PENG Lin[2][3] QIAN Ye[2][3]
关键词:
 BP神经网络聚类分析预测价格
Keywords:
 BP neural networkclustering analysisforecastingprice
分类号:
TP31
文献标志码:
A
摘要:
 文中主要是建立基于智能算法的价格预测模型,解决商品价格预测的难题。首先通过德尔菲技术进行专家意见征询,确定影响商品价格的因子;然后数据化处理影响因子后,利用拉依达准则剔除异常数据;再以影响因子为输入量,采用BP神经网络算法建立商品预测模型;采用聚类分析算法建立预测模型与之对比。以玫瑰鲜切花为例建立价格预测模型,实验结果表明:该商品价格预测模型规避了单纯BP神经网络算法的缺陷,具有预测商品价格的普遍性、实用性。
Abstract:
 In order to estimate commodity prices,the purpose in this paper is to establish the forecasting price model. Firstly,through ex-pert consulting by the Delphi technique,the factors influencing commodity prices are determined. Secondly,after processing the factors, data are got,and abnormal data of them are eliminated according to Pauta criterion. Thirdly,with the influencing factors as input data,es-tablish the forecasting commodity prices model by means of the BP neural network algorithm. Finally,this algorithm is compared with the clustering analysis algorithm applied in the forecasting model. This forecasting model has been applied to predict the rose cut flowers. The experimental results show that this forecasting model can avoid defects of traditional BP algorithm,and has certain generality and practi-cality.

相似文献/References:

[1]王菲露 宋杰 宋杨.BP神经网络在蛋白质二级结构预测中的应用[J].计算机技术与发展,2009,(05):217.
 WANG Fei-lu,SONG Jie,SONG Yang.Application of BP Neural Network in Protein Secondary Structure Prediction[J].,2009,(11):217.
[2]李秉 王凤山 李晓军.一种弹炮结合武器系统作战效能评估方法[J].计算机技术与发展,2009,(06):217.
 LI Bing,WANG Feng-shan,LI Xiao-jun.An Evaluation Method of Operational Effectiveness of Anti - Aircraft Gun Missile Weapon System[J].,2009,(11):217.
[3]贾其燕 王友仁 崔江.一种基于遗传算法的动态电流测试生成方法[J].计算机技术与发展,2009,(06):225.
 JIA Qi-yan,WANG You-ren,CUI Jiang.A Dynamic Current Test Generation Method Based on Genetic Algorithm[J].,2009,(11):225.
[4]王宁.一种基于BP神经网络的即时在线推荐系统[J].计算机技术与发展,2009,(07):230.
 WANG Ning.An Online Recommendation System Based on BP Network[J].,2009,(11):230.
[5]钟以维 徐应涛 张莹.用填充函数法改进的人脸比对算法[J].计算机技术与发展,2009,(08):78.
 ZHONG Yi-wei,XU Ying-tao,ZHANG Ying.Face Comparison Algorithm Based on Filled Function Method[J].,2009,(11):78.
[6]夏玫 陈立潮 王新波.一种提高BP神经网络泛化能力的改进算法[J].计算机技术与发展,2009,(09):62.
 XIA Mei,CHEN Li-chao,WANG Xin-bo.A Modified Algorithm to Improve Generalization Ability of BP Neural Network[J].,2009,(11):62.
[7]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(11):177.
[8]陈虹 梁文彬 李宗宝 董航飞.基于机器人的神经网络预测控制算法[J].计算机技术与发展,2008,(08):65.
 CFIEN Hong,LIANG Wen-bin,LI Zong-bao,et al.A Neural Network Predictive Control Algorithm Based on Robot[J].,2008,(11):65.
[9]张龙 吴江 张德同.基于粗糙集和BP神经网络的天然裂缝识别[J].计算机技术与发展,2008,(11):41.
 ZHANG Long,WU Jiang,ZHANG De-tong.A Method for Natural Fractures Identification Based on Rough Sets Theory and BP Neural Network[J].,2008,(11):41.
[10]胡人君 李坤 吴小培.基于脑电信号的思维任务分类[J].计算机技术与发展,2007,(05):173.
 HU Ren-jun,LI Kun,WU Xiao-pei.Classification for Different Mental Tasks Based on EEG Signals[J].,2007,(11):173.
[11]段艳明. 基于PSO算法和BP神经网络的PID控制研究[J].计算机技术与发展,2014,24(08):238.
 DUAN Yan-ming. Research of PID Control Based on BP Neural Network and PSO Algorithm[J].,2014,24(11):238.
[12]朱俚治. 一种基于BP神经网络的智能检测病毒方法[J].计算机技术与发展,2014,24(10):163.
 ZHU Li-zhi. An Intelligent Virus Detection Method Based on BP Neural Network[J].,2014,24(11):163.
[13]侯翔,廖小平. 基于PSO算法的洪水预报模型研究[J].计算机技术与发展,2015,25(04):200.
 HOU Xiang,LIAO Xiao-ping. Research on Flood Forecasting Model Based on PSO[J].,2015,25(11):200.
[14]关成立[][],杨岳[],陈兴汉[][]. 基于BP神经网络的线路板废水处理研究[J].计算机技术与发展,2015,25(08):194.
 GUAN Cheng-li[] [],YANG Yue[] CHEN Xing-han[][]. Research on Wastewater Treatment Process of Printed Circuit Board Based on Neural Network[J].,2015,25(11):194.
[15]潘春花,孙燕,朱存. 太阳黑子活动周期特征的神经网络和小波分析[J].计算机技术与发展,2016,26(03):158.
 PAN Chun-hua,SUN Yan,ZHU Cun. BP Neural Network and Wavelet Analysis of Period of Sunspot Activity[J].,2016,26(11):158.
[16]郭建峰[][],李玉[],安东[]. 基于LM遗传神经网络的短期股价预测[J].计算机技术与发展,2017,27(01):152.
 GUO Jian-feng[][],LI Yu[],AN Dong[]. Prediction for Short-term Stock Price Based on LM-GA-BP Neural Network[J].,2017,27(11):152.
[17]王栋. 基于BP神经网络的公路客运量预测方法[J].计算机技术与发展,2017,27(02):187.
 WANG Dong. Prediction Method of Highway Passenger Transportation Volume Based on BP Neural Network[J].,2017,27(11):187.
[18]邓文杰. 基于聚粒子群算法的神经网络权值优化方法[J].计算机技术与发展,2017,27(10):16.
 DENG Wen-jie. A Neural Network Weights Optimization Method Based on Clustering Particle Swarm Optimization[J].,2017,27(11):16.

更新日期/Last Update: 2015-04-13