[1]戚曹[],朱桂斌[],赵林[],等. 基于多分辨率奇异值分解的图像融合[J].计算机技术与发展,2014,24(11):96-99.
 QI Cao[],ZHU Gui-bin[],ZHAO Lin[],et al. Image Fusion Based on Multi-resolution Singular Value Decomposition[J].,2014,24(11):96-99.
点击复制

 基于多分辨率奇异值分解的图像融合()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
96-99
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Image Fusion Based on Multi-resolution Singular Value Decomposition
文章编号:
1673-629X(2014)11-0096-04
作者:
 戚曹[1] 朱桂斌[2] 赵林[1] 朱国庆[1]
 1.重庆通信学院 应急通信重庆市重点实验室;2.重庆通信学院 信息资源管理应用教研室
Author(s):
 QI Cao[1] ZHU Gui-bin[2] ZHAO Lin[1] ZHU Guo-qing[1]
关键词:
 多分辨率奇异值分解图像融合
Keywords:
 multi-resolutionsingular value decompositionimage fusion
分类号:
TP301.6
文献标志码:
A
摘要:
 提出一种新的基于多分辨率奇异值分解( MSVD)图像融合算法。算法对源图像进行MSVD处理,使其分解为互不相关的平滑和细节分量,并对平滑分量进行多层次的分解与处理。类似于小波变换,多分辨率奇异值分解的基本思想是在平滑分量的每一层上用奇异值分解( SVD)来取代滤波,最终利用融合规则对图像进行MSVD融合。利用5种评价算子来评价算法,得到的融合效果很好。与基于小波分解的算法相比,算法计算简单、实时性突出,对复杂、高像素图像处理更简单方便。
Abstract:
 A novel image fusion algorithm based on multi-resolution singular value decomposition has been presented and evaluated. The images are processed with the MSVD algorithms and decomposed into unrelated smooth and detail components,and the smooth compo-nents are processed by the multi-level decomposition. Similar to the wavelet transform,the basic idea of the multi-resolution singular val-ue decomposition is to replace the filter with the Singular Value Decomposition ( SVD) on each layer of the smooth components. Finally MSVD integration is used with the image fusion rules. Five evaluation metrics are presented to evaluate the algorithm,and the algorithm achieves great performance. Compared with the algorithm based on wavelet decomposition,the algorithm presented is computing simply and its highlight is real-time performance,especially for high-pixels and complex images processing,which is more simple and conven-ient.

相似文献/References:

[1]刘忠艳 周波 车向前.一种高效的图像匹配算法[J].计算机技术与发展,2009,(04):45.
 LIU Zhong-yan,ZHOU Bo,CHE Xiang-qian.An Effective Algorithm for Image Registration[J].,2009,(11):45.
[2]王斯刚 边根庆 屈学民 杨继庆.基于小波不可分离多分辨率的图像重建[J].计算机技术与发展,2008,(07):247.
 WANG Si-gang,BIAN Gen-qing,QU Xue-min,et al.Image Reconstruction Based on Wavelet Non- Separable MRA[J].,2008,(11):247.
[3]王玉辉 郭刚[] 徐锡山.多分辨率点状地标实时渲染研究[J].计算机技术与发展,2012,(02):209.
 WANG Yu-hui,GUO Gang,XU Xi-shan.Research on Real Time Rendering of Multi-Resolution Point Features[J].,2012,(11):209.
[4]徐阳,陈华.一种支持多分辨率查询的数据存储策略[J].计算机技术与发展,2014,24(02):123.
 XU Yang[],CHEN Hua[].A Data Storage Strategy for Multi-resolution Query[J].,2014,24(11):123.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[11]马金辰,谢世朋,李海波. 基于多个低秩纹理提取的图像校正方法[J].计算机技术与发展,2017,27(03):97.
 MA Jin-chen,XIE Shi-peng,LI Hai-bo. Image Rectification Method Based on Multiple Low-rank Textures Extraction[J].,2017,27(11):97.

更新日期/Last Update: 2015-04-13