[1]陶元芳,刘晓光.一种应用ARPSO优化RBF神经网络的方法[J].计算机技术与发展,2014,24(11):43-46.
 TAO Yuan-fang,LIU Xiao-guang. A Method of Optimizing Radial Basis Function Neural Network by ARPSO[J].,2014,24(11):43-46.
点击复制

一种应用ARPSO优化RBF神经网络的方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
43-46
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 A Method of Optimizing Radial Basis Function Neural Network by ARPSO
文章编号:
1673-629X(2014)11-0043-04
作者:
 陶元芳刘晓光
 太原科技大学 机械工程学院
Author(s):
 TAO Yuan-fangLIU Xiao-guang
关键词:
 微粒群算法吸引扩散RBF神经网络最近邻聚类方法
Keywords:
 Particle Swarm Optimization ( PSOattractiverepulsiveradial basis function neural networknearest neighbor cluster algo-rithm
分类号:
TP183
文献标志码:
A
摘要:
 针对径向基函数神经网络参数难以设置以及因此而导致的网络隐层结构不明朗的问题,提出了一种应用控制种群多样性的微粒群( ARPSO)优化径向基函数神经网络( RBF)的方法。通过引入“吸引”和“扩散”因子对基本微粒群算法进行改进,并将改进的微粒群算法用于RBF聚类半径的优化,进而能够合理地确定RBF的隐层结构。将用ARPSO优化的RBF神经网络应用于非线性函数逼近,经实验仿真验证,与基本微粒群( PSO)算法、收缩因子微粒群( CFA PSO)算法优化的RBF神经网络相比较,在收敛速度和识别精度上有了显著的提高。
Abstract:
 Aiming at the problems that parameters of radial basis function neural network are difficult to be set up and thus lead to network hidden layer structural uncertain,a novel radial basis function neural network method based on a diversity-guided particle swarm is pro-posed. By introducing the "attract" and "proliferation" factor,the basic particle swarm algorithm is improved. The RBF hidden layer structure can be reasonably determined by using the improved particle swarm optimization for clustering radius. The new training algo-rithm is used to approximate polynominal function,compared with PSO,and CFA PSO,the algorithm improves the velocity of conver-gence and recognition accuracy.

相似文献/References:

[1]贾占朝 张亚鸣.基于遗传微粒群混合算法的灰度图像增强[J].计算机技术与发展,2009,(07):69.
 JIA Zhan-chao,ZHANG Ya-ming.A Gray- Image Enhancement Based GA and PSO Hybrid Algorithm[J].,2009,(11):69.
[2]户晓玲 曾建潮.基于微粒群模型的移动传感器网络部署研究[J].计算机技术与发展,2009,(10):81.
 HU Xiao-ling,ZENG Jian-chao.Deployment of Wireless Sensor Networks Mobile Nodes Based on Particle Swarm Optimization Model[J].,2009,(11):81.
[3]卢桂馥 刘金飞 王勇 窦易文.基于微粒群算法和脉冲耦合神经网络的图像分割算法[J].计算机技术与发展,2008,(07):90.
 LU Gui-fu,LIU Jin-fei,WANG Yong,et al.An Image Segmentation Method Based on PSO Algorithm and PCNN[J].,2008,(11):90.
[4]熊鹰 周树民 祁辉.求解二层规划的混合微粒群算法[J].计算机技术与发展,2007,(04):229.
 XIONG Ying,ZHOU Shu-min,QI Hui.Hybrid Particle Swarm Optimization for Bilevel Programming[J].,2007,(11):229.
[5]张丽 刘希玉.基于微粒群算法的聚类算法改进[J].计算机技术与发展,2010,(11):126.
 ZHANG Li,LIU Xi-yu.Improved Research of Clustering Algorithm Based on PSO[J].,2010,(11):126.
[6]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[7]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[8]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[9]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[10]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.

更新日期/Last Update: 2015-04-07