[1]赵礼峰,王小龙. 图的Steiner最小树问题的混合遗传算法[J].计算机技术与发展,2014,24(10):110-114.
 ZHAO Li-feng,WANG Xiao-long. Hybrid Genetic Algorithm of Graphical Steiner Tree Problem[J].,2014,24(10):110-114.
点击复制

 图的Steiner最小树问题的混合遗传算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年10期
页码:
110-114
栏目:
智能、算法、系统工程
出版日期:
2014-10-10

文章信息/Info

Title:
 Hybrid Genetic Algorithm of Graphical Steiner Tree Problem
文章编号:
1673-629X(2014)10-0110-05
作者:
 赵礼峰王小龙
 南京邮电大学 理学院
Author(s):
 ZHAO Li-fengWANG Xiao-long
关键词:
 Steiner最小树遗传算法自适应混合遗传算法
Keywords:
 Steiner minimal tree problemgenetic algorithmself-adaptionhybrid genetic algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 图的Steiner最小树问题是经典的组合优化问题,在通信网络和电路设计中有广泛应用。文中在遗传算法的基础上,对交叉率pc和变异率pm采用自适应过程,构造一种新的确定pc和pm的公式,有效解决了参数选取对最终结果的影响问题。再与模拟退火算法相结合,提出了一种解决Steiner最小树问题的混合遗传算法。该算法克服了遗传算法易早熟和收敛性能差的缺点,有效地增强了算法的进化能力。通过对OR-Library的部分实例进行计算结果表明,在大多数情况下混合遗传算法比遗传算法有更好的性能。
Abstract:
 The Graphical Steiner tree Problem ( GSP) is a classical combinatorial optimization problem,which has been widely used in communication network and the circuit design. In this paper,on the basis of genetic algorithm,apply the adaptive process for the crossover rate and mutation rate,to construct a new formula determining the crossover rate and mutation rate,effectively solving the problem of pa-rameters selection on the final result. Combined with the simulated annealing algorithm,propose a hybrid genetic algorithm to solve the problem of minimum Steiner tree. The algorithm overcomes the faults of genetic algorithm is easy to premature and poor convergence per-formance,effectively enhancing the capacity of the evolution of the algorithm. By the OR-Library test case calculation results show that, in most cases,the hybrid genetic algorithm has better performance than genetic algorithm.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2015-04-02