[1]赵颖辉[][],蒋从锋[][]. 遥感影像的高性能并行处理技术研究[J].计算机技术与发展,2014,24(07):201-205.
 ZHAO Ying-hui[][],JIANG Cong-feng[][]. Research on High Performance Parallel Processing Technology for Remote Sensing Images[J].,2014,24(07):201-205.
点击复制

 遥感影像的高性能并行处理技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
201-205
栏目:
应用开发研究
出版日期:
2014-07-10

文章信息/Info

Title:
 Research on High Performance Parallel Processing Technology for Remote Sensing Images
文章编号:
1673-629X(2014)07-0201-05
作者:
 赵颖辉[1][2]蒋从锋[3][4]
 1.浙江同济科技职业学院 水利工程系;2.河海大学 地球科学与工程学院;3.杭州电子科技大学 计算机科学与技术学院;4.杭州电子科技大学 云计算技术研究中心
Author(s):
 ZHAO Ying-hui[1][2]JIANG Cong-feng[3][4]
关键词:
 遥感图像处理高性能计算并行处理通用图形处理单元  
Keywords:
 remote sensingimage processinghigh performance computingparallel processingGPGPU
分类号:
TP79
文献标志码:
A
摘要:
 随着空间遥感技术和对地观测技术的不断发展,光学、热红外和微波等不同技术手段可以获取同一地区的多种遥感影像数据(多时相、多光谱、多传感器、多平台和多分辨率等),每天获取的遥感数据量越来越大。同时,大量的遥感应用需要快速地对这些遥感数据进行处理与分析,提供辅助决策信息。因此,如果不能及时进行数据处理,这些数据就会失去时效性,甚至失去数据本身的价值。高性能计算与并行处理技术,加速了遥感影像数据处理与信息提取的进度,如大规模多处理系统、网格与云计算技术、通用图形处理器( GPGPU)等。文中综述了高性能计算、并行处理及云计算技术应用于遥感领域的最新进展,给出了一些研究与应用范例,并提出了当前高性能遥感影像处理所面临的一些挑战。
Abstract:
 With the rapid developments in spatial remote sensing and earth observations,multiple approaches are used for remote sensing image acquisition,including multi-temporal,multi-spectral,various platforms and multi-scale precision based technologies. At the same time,the large amount of remote sensing application for processing and analysis of the remote sensing data,provide auxiliary decision-making information. These explosive sensed data will lose their temporal value if they can’ t be processed in time in many remote sensing applications. For the sake of high performance computing and parallel processing technologies,the image processing procedure is speeded by large scale multiprocessor system, grid and cloud computing platform and general purpose graphical processing units. In this paper summarize the recent advances in high performance computing,parallel processing,cloud computing technology for sensing field. Give some examples of research and application,also discuss some challenges in this research area.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-03-17