[1]张方舟,郝庆辉,周勃,等.遗传算法的RBF神经网络在线损计算中的应用[J].计算机技术与发展,2014,24(06):192-195.
 ZHANG Fang-zhou,HAO Qing-hui,ZHOU B,et al.Application of RBF Neural Network of Genetic Algorithm in Calculation of Line Losses[J].,2014,24(06):192-195.
点击复制

遗传算法的RBF神经网络在线损计算中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年06期
页码:
192-195
栏目:
应用开发研究
出版日期:
2014-06-30

文章信息/Info

Title:
Application of RBF Neural Network of Genetic Algorithm in Calculation of Line Losses
文章编号:
1673-629X(2014)06-00192-04
作者:
张方舟;郝庆辉;周勃;刘庆;韩东洋
东北石油大学 计算机与信息技术学院
Author(s):
ZHANG Fang-zhouHAO Qing-hui;ZHOU B;LIU Qing;HAN Dong-yang
关键词:
RBF神经网络遗传算法电网线损计算
Keywords:
RBF neural networkgenetic algorithmline loss calculation
分类号:
TP39
文献标志码:
A
摘要:
电力网线损率是综合反映电力网规划设计、生产运行和经营管理的一项重要指标。如何有效地降低电力网电能损耗、提高企业经济效益已成为迫切需要解决的问题。文中提出一种基于遗传算法的RBF神经网络对线损进行计算,并且针对RBF神经网络的隐含层与输出层相互独立和输出结果容易陷入局部最小等缺点,运用遗传算法对整个网络进行优化,另外对遗传算法进行了相应的改进。为了验证算法的可行性,文中以大庆油田某一地区的67条线路为样本进行仿真计算。实验结果证明了遗传算法优化的RBF神经网络在计算精度和训练速度上都有较大提高。
Abstract:
Lineloss rate is an important index reflecting the power network planning and design,producting operation and management. How to effectively reduce the power loss and improve the economic profit of enterprises have became an urgent problem. Present a RBF neural network based on genetic algorithm for line loss calculation and in view of the defects of RBF neural network hidden layer and out-put layer are independent of each other and the output is likely to fall into local minimum,apply genetic algorithm to optimize the whole network,in addition to the genetic algorithm for the corresponding improvements. In order to verify the feasibility of the algorithm,select 67 line in a certain area of Daqing oil field as samples for simulation and experimental results indicate that the the RBF neural network op-timized by genetic algorithm in the calculation precision and speed of train has increased greatly.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(06):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(06):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(06):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(06):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(06):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(06):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(06):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(06):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(06):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(06):158.

更新日期/Last Update: 1900-01-01