[1]耿永政,陈坚.结合图论的JSEG彩色图像分割算法[J].计算机技术与发展,2014,24(05):15-19.
 GENG Yong-zheng,CHEN Jian.JSEG Color Image Segmentation Algorithm Combining Graph Theory[J].,2014,24(05):15-19.
点击复制

结合图论的JSEG彩色图像分割算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年05期
页码:
15-19
栏目:
智能、算法、系统工程
出版日期:
2014-05-31

文章信息/Info

Title:
JSEG Color Image Segmentation Algorithm Combining Graph Theory
文章编号:
1673-629X(2014)05-0015-05
作者:
耿永政陈坚
西南大学 计算机与信息科学学院
Author(s):
GENG Yong-zhengCHEN Jian
关键词:
K-meansJSEG算法图理论图像分割
Keywords:
K-meansJSEG algorithmgraph theoryimage segmentation
分类号:
TP301.6
文献标志码:
A
摘要:
静态图像压缩标准( JSEG)分割算法是一种经典的图像分割方法,它充分考虑到了图像的局部信息,可以获得比较精确的分割边界。但JSEG算法在分割过程中计算量相当大并且分割结果容易出现过分割现象。由此,文中提出一种结合图论的JSEG图像分割算法。首先去除JSEG算法中在多个尺度上反复计算J值的过程,改为仅在一个小尺度上进行计算。其次,在得到的J图上使用K-means方法进行聚类,分割得到过分割区域。最后,将分割后的小区域对应为图中的点,进而利用图理论的方法进行区域合并。实验结果表明新算法具有高精度和低复杂度的优势。
Abstract:
Joint Systems Engineering Group ( JSEG) is a classical method of image segmentation algorithm. It fully takes the local image information into account,so it can get more precise segmentation boundary. But the JSEG algorithm has the large computation and over-segmentation problems. For this reason,propose a segmentation algorithm combining JSEG and graph theory. Firstly,calculate J value on-ly on a small scale instead of the iterative process on multi-scale. Secondly,use the K-means clustering method on the J-map to get over-segmentation regions. Finally,use a point to replace a region,and then use the graph theory for region merging. Experimental results show that the new algorithm has the advantage of a high accuracy and low complexity.

相似文献/References:

[1]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(05):58.
[2]李若鹏 李翔 林祥 李建华.基于DK算法的互联网热点主动发现研究与实现[J].计算机技术与发展,2008,(09):1.
 LI Ruo-peng,LI Xiang,LIN Xiang,et al.Discovering Information Hotspots on Initiative over Internet Based on DK Clustering Algorithm[J].,2008,(05):1.
[3]朱云贺 张春海 张博.基于数据分段的K-means的优化研究[J].计算机技术与发展,2010,(11):130.
 ZHU Yun-he,ZHANG Chun-hai,ZHANG Bo.Optimizing Research on K-means Based on Data Partition[J].,2010,(05):130.
[4]何云 李辉 姚能坚 赵榕生.改进K-means算法实现移动通信行为特征分析[J].计算机技术与发展,2011,(06):63.
 HE Yun,LI Hui,YAO Neng-jian,et al.Application of Improved K-Means Algorithm in Mobile Communication Behavioral Characteristic Analysis[J].,2011,(05):63.
[5]黎银环,张剑.改进的 K-means 算法在入侵检测中的应用[J].计算机技术与发展,2013,(01):165.
 LI Yin-huan,ZHANG Jian.Application of Improved K-means Clustering Algorithm in Intrusion Detection[J].,2013,(05):165.
[6]李四海,满自斌.自适应特征权重的K-means聚类算法[J].计算机技术与发展,2013,(06):98.
 LI Si-hai[],MAN Zi-bin[].K-means Clustering Algorithm Based on Adaptive Feature Weighted[J].,2013,(05):98.
[7]陈斌,苏一丹,黄山. 基于KM-SMOTE和随机森林的不平衡数据分类[J].计算机技术与发展,2015,25(09):17.
 CHEN Bin,SU Yi-dan,HUANG Shan. Classification of Imbalance Data Based on KM-SMOTE Algorithm and Random Forest[J].,2015,25(05):17.
[8]胡磊,蔡红霞,俞涛. 双重聚类的协同过滤算法在智能家居中的应用[J].计算机技术与发展,2017,27(02):100.
 HU Lei,CAI Hong-xia,YU Tao. Application of Collaborative Filtering Recommendation Based on Double Clustering in Smart Home System[J].,2017,27(05):100.
[9]鲍黎明,黄刚. 基于多叉树确定K值的动态K-means聚类算法[J].计算机技术与发展,2017,27(06):41.
 BAO Li-ming,HUANG Gang. A Dynamic Clustering Algorithm of K-means Based onMulti-branches Tree for K-values[J].,2017,27(05):41.
[10]曹耀彬,王亚刚. 免疫算法优化的RBF在入侵检测中的应用[J].计算机技术与发展,2017,27(06):114.
 CAO Yao-bin,WANG Ya-gang. Application of RBF Neural Network Optimized by Immune Algorithm in Intrusion Detection[J].,2017,27(05):114.

更新日期/Last Update: 1900-01-01