[1]夏士明,李骞,谢凯翔.形状特征的卫星云图检索方法研究[J].计算机技术与发展,2014,24(04):60-64.
 XIA Shi-ming,LI Qian,XIE Kai-xiang.A Method of Satellite Cloud Image Retrieval of Shape Feature[J].,2014,24(04):60-64.
点击复制

形状特征的卫星云图检索方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
60-64
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
A Method of Satellite Cloud Image Retrieval of Shape Feature
文章编号:
1673-629X(2014)04-0060-05
作者:
夏士明李骞谢凯翔
解放军理工大学 气象海洋学院
Author(s):
XIA Shi-mingLI QianXIE Kai-xiang
关键词:
卫星云图特征向量相似性检索旋转不变性
Keywords:
satellite cloud imagefeature vectorsimilarity retrievalrotation invariance
分类号:
TP301
文献标志码:
A
摘要:
卫星云图的相似性检索可以帮助预报人员较快地定位历史相似天气状况,提高天气预报的可靠性。文中尝试采用Zernike矩和网格法来提取云图中云的形状区域特征,并对卫星云图进行相似性检索。其过程为:首先对云图进行云地分离的预处理,然后提取云的形状区域特征,并在此基础上生成云图库所对应的特征向量库,接着进行相似度的距离计算和相似性匹配,最后根据距离的排序顺序输出最终的检索结果。通过比较两种方法的检索效果,提出了一种改进的形状特征提取方法-网格内切圆法。实验表明该方法具有以上两种方法的优点,能够得到较好的检索效果,可以有效检索出视觉上相似的云图。
Abstract:
Satellite cloud image retrieval can help forecasters position similar weather in the past quickly and improve the reliability of the weather forecast. It attempts to use the Zernike moment and grid based method to extract the cloud shape regional characteristics,making similar retrieval for satellite cloud image. The retrieval process is:first of all,carry out the pretreatment of separation on the cloud image, extract the effective characteristics and generate characteristics of the cloud atlas library. Then carry out similarity measurement and simi-larity matching between a given cloud image and the cloud atlas. Finally,output the final result according to the order. By comparing re-trieval results of the two methods,put forward an improved algorithm called grid based inscribed circle method. Experiments show that this method owns the advantages of the above two methods and can retrieve cloud images with similar visual characteristics from the his-tory cloud image atlas.

相似文献/References:

[1]常庆 周明全 耿国华.基于PageRank和HITS的Web搜索[J].计算机技术与发展,2008,(07):77.
 CHANG Qing,ZHOU Ming-quan,GENG Guo-hua.PageRank and HITS- Based Web Search[J].,2008,(04):77.
[2]王峰 王浩 王秀友.一种基于点模式的指纹分阶段匹配算法的研究[J].计算机技术与发展,2007,(11):114.
 WANG Feng,WANG Hao,WANG Xiu-you.Study of Fingerprint Grading Matching Algorithm Based on Point Pattern[J].,2007,(04):114.
[3]张靖 葛玮 郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,(12):144.
 ZHANG Jing,GE Wei,HAO Ke-gang.Research of Principal Component Analysis in Software Metrics[J].,2006,(04):144.
[4]车丽美 肖洋 王甦易[] 姜倩倩.Kmeans聚类分析在形音字表音度中的应用[J].计算机技术与发展,2011,(02):223.
 CHE Li-mei,XIAO Yang,WANG Su-yi,et al.Application of Kmeans Clustering Analysis in Chinese Pronunciation Degree[J].,2011,(04):223.
[5]刘勇 林景栋 穆伟力.基于H-K算法的MIDI音乐主旋律提取[J].计算机技术与发展,2011,(06):154.
 LIU Yong,LIN Jing-dong,MU Wei-li.Melody Extraction Method from MIDI Based on H-K Algorithm[J].,2011,(04):154.
[6]章鹏程.基于单因素方差分析的P2P流特征向量优化方法[J].计算机技术与发展,2012,(04):101.
 ZHANG Peng-cheng.Optimal Method Based on One-Way Analysis of Variance for P2P Feature Vector[J].,2012,(04):101.
[7]贾志先.考试数据分析及孤立点检测的谱聚类方法[J].计算机技术与发展,2013,(01):103.
 JIA Zhi-xian.Spectral Clustering Method for Exam Data Analysis and Outlier Detection[J].,2013,(04):103.
[8]张培颖,王雷全.基于语义距离的文本分类方法[J].计算机技术与发展,2013,(01):128.
 ZHANG Peo-ying,WANG Lei-quan.Text Classification Method Based on Semantic Distance[J].,2013,(04):128.
[9]王玉军.一种相关快速软阈值坐标下降算法[J].计算机技术与发展,2013,(12):55.
 WANG Yu-jun.A Relative Fast Soft-thresholding Coordinate Descent Algorithm[J].,2013,(04):55.
[10]肖红,许少华. 改进的话题检测和跟踪算法研究[J].计算机技术与发展,2014,24(09):84.
 XIAO Hong,XU Shao-hua. Improved Algorithm Study on Topic Detection and Tracking[J].,2014,24(04):84.

更新日期/Last Update: 1900-01-01