[1]王博,李燕.视频序列中的时空兴趣点检测及其自适应分析[J].计算机技术与发展,2014,24(04):49-52.
 WANG Bo,LI Yan.Space-time Interest Points Detection in Video Sequence and Its Adaptive Analysis[J].,2014,24(04):49-52.
点击复制

视频序列中的时空兴趣点检测及其自适应分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
49-52
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
Space-time Interest Points Detection in Video Sequence and Its Adaptive Analysis
文章编号:
1673-629X(2014)04-0049-04
作者:
王博李燕
南京邮电大学
Author(s):
WANG BoLI Yan
关键词:
行为识别Harris角点检测时空兴趣点自适应分析
Keywords:
action recognitionHarris corner detectionspace-time interest pointsadaptive analysis
分类号:
TP301
文献标志码:
A
摘要:
基于时空兴趣点的行为识别方法是目前较为流行的行为识别方法之一,它通过检测像素值在时空邻域有显著变化的兴趣点并从中提取底层特征来进行行为描述。由于时空兴趣点提取的是局部特征,不易受光照、运动特性、背景变化等影响,使这一方法具有较好的鲁棒性。文中采用尺度自适应的兴趣点检测算法,首先给出其详细的数学推理并对其自适应性进行分析,然后提取兴趣点局部邻域特征并用SVM方法对其进行分类操作以达到行为识别的目的。实验结果表明,该方法具有较好的尺度自适应性和识别结果。
Abstract:
Space-time interest points based method is one of the most prevalent approaches of action recognition in recent years, this method represents actions by low-level features extracted from space-time interest points which has a significant local variation of image intensities in spatio-temporal domain. Because the low-level features are local features actually hence suffer little influence of lighting,in-dividual patterns of motion,nonstationary backgrounds due to their local nature,this method is more robust than others. In this paper,em-ploy an adaptive interest points detection algorithm. First,a detailed mathematical proof of interest points detection and its adaptive analy-sis is given,and then,extract the local space-time features and combine it with SVM classification schemes for action recognition. Experi-ment proves that this method has a good adaptive nature and a good recognition results.

相似文献/References:

[1]叶鹏 王琰.一种改进的Harris多尺度角点检测[J].计算机技术与发展,2010,(04):58.
 YE Peng,WANG Yan.An Improved Harris Multi- Scale Corner Detection[J].,2010,(04):58.
[2]毛雁明 兰美辉 王运琼 冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,(05):130.
 MAO Yan-ming,LAN Mei-hui,WANG Yun-qiong,et al.An Improved Corner Detection Method Based on Harris[J].,2009,(04):130.
[3]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(04):83.
[4]石爱辉,程勇,曹雪虹.结合码本优化和特征融合的人体行为识别方法[J].计算机技术与发展,2018,28(02):107.[doi:10.3969/j.issn.1673-629X.2018.02.024]
 SHI Ai-hui,CHENG Yong,CAO Xue-hong.A Human Action Recognition Method Combined with Codebook Optimization and Feature Fusion[J].,2018,28(04):107.[doi:10.3969/j.issn.1673-629X.2018.02.024]
[5]黄菲菲[],曹江涛[],姬晓飞[]. 基于多通道信息融合的双人交互动作识别算法[J].计算机技术与发展,2016,26(03):58.
 HUANG Fei-fei[],CAO Jiang-tao[],JI Xiao-fei[]. Two-human Interaction Recognition Algorithm Based on Multi-channels Information Fusion[J].,2016,26(04):58.
[6]毛驾燕,沈苏彬.一种面向智能家居老人看护系统的实现方案[J].计算机技术与发展,2018,28(08):164.[doi:10.3969/ j. issn.1673-629X.2018.08.035]
 MAO Jia-yan,SHEN Su-bin.A Realization Scheme for Elderly Care System in Smart Home[J].,2018,28(04):164.[doi:10.3969/ j. issn.1673-629X.2018.08.035]
[7]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].,2019,29(04):71.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
[8]闫 坤,沈苏彬.一种基于智能家居的用户行为预测方法[J].计算机技术与发展,2020,30(01):19.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 004]
 YAN Kun,SHEN Su-bin.A User Behavior Prediction Method Based on Smart Home[J].,2020,30(04):19.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 004]
[9]杜潘飞,王志辉,李雄伟,等.异常行为检测数据集快速构建方法[J].计算机技术与发展,2021,31(09):155.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 026]
 DU Pan-fei,WANG Zhi-hui,LI Xiong-wei,et al.Fast Construction Strategy of Abnormal Action Detection Dataset[J].,2021,31(04):155.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 026]
[10]姚 捃,郭志林.一种端到端的考场多目标行为识别算法[J].计算机技术与发展,2022,32(09):174.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 027]
 YAO Jun,GUO Zhi-lin.An End-to-end Multi-objective Behavior Recognition Algorithm for Examination Room[J].,2022,32(04):174.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 027]

更新日期/Last Update: 1900-01-01