[1]王越,吕光宏.改进的粒子群求解多目标优化算法[J].计算机技术与发展,2014,24(02):42-45.
 WANG Yue,Lü Guang-hong.Modified Particle Swarm Optimization Algorithm Solving Multi-objective[J].,2014,24(02):42-45.
点击复制

改进的粒子群求解多目标优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年02期
页码:
42-45
栏目:
智能、算法、系统工程
出版日期:
2014-02-28

文章信息/Info

Title:
Modified Particle Swarm Optimization Algorithm Solving Multi-objective
文章编号:
1673-629X(2014)02-0042-04
作者:
王越吕光宏
四川大学 计算机学院
Author(s):
WANG YueLü Guang-hong
关键词:
粒子群算法多目标优化Pareto最优解全局最优值个体最优值
Keywords:
particle swarm optimization algorithmmulti-objective optimizationPareto optimalglobal bestpersonal best
分类号:
TP301.6
文献标志码:
A
摘要:
根据粒子群算法求解多目标问题的特点,个体极值和全局极值的选择不同会对实验结果产生很大影响。目前普遍的选择方法仅仅根据简单的支配关系,但是会存在两个解之间没有支配关系而导致不去更新个体最优值(PB)和全局最优值(GB),这样会导致更好的个体极值和全局极值的遗漏从而降低收敛时间。文中提出一种新的个体极值和全局极值的选择策略。使用这种策略,可以加快收敛,提高准确性,防止非劣解的遗漏。通过几个测试函数的实验仿真,所得解集的分步性和多样性都有显著的提高。
Abstract:
According to the characteristics of particle swarm optimization algorithm for solving multi-objective problems,the choice of personal best and global best will affect the result greatly. The current selection method is only based on their dominant relationship,but if there is no dominant relationship between two solutions,PB and GB will not be updated. This will miss the better PB and GB and ex-tend the convergence time. A new selection strategy for personal best and global best is presented. Using this strategy can accelerate con-vergence,improve accuracy,avoid non-dominated solution discard. The performance of this strategy is evaluated on several test function. The results show that the diversity and the distribution of the non-dominated solution is highly raised compared with other PSO algo-rithm.

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(02):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(02):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(02):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(02):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(02):105.
[6]廖宁 刘建勋 王俊年.DPSO算法在服务网格资源调度中的应用[J].计算机技术与发展,2009,(08):104.
 LIAO Ning,LIU Jian-xun,WANG Jun-nian.Application of Discrete Particle Swarm Optimization Algorithm to Service Grid Resource Optimization Scheduling[J].,2009,(02):104.
[7]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(02):18.
[8]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(02):32.
[9]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(02):137.
[10]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(02):83.
[11]刘慧慧. 一种改进的粒子群多目标优化算法研究[J].计算机技术与发展,2015,25(01):87.
 LIU Hui-hui. Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm[J].,2015,25(02):87.

更新日期/Last Update: 1900-01-01