[1]冯桂莲.偏微分方程的MATLAB数值解法及可视化[J].计算机技术与发展,2013,(12):120-123.
 FENG Gui-lian.Numerical Solution and Visualization by MATLAB of Partial Differential Equations[J].,2013,(12):120-123.
点击复制

偏微分方程的MATLAB数值解法及可视化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年12期
页码:
120-123
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Numerical Solution and Visualization by MATLAB of Partial Differential Equations
文章编号:
1673-629X(2013)12-0120-04
作者:
冯桂莲
青海民族大学
Author(s):
FENG Gui-lian
关键词:
偏微分方程MATLAB泊松方程数值解法可视化
Keywords:
partial differential equationsMATLABPoisson equationnumerical solutionvisualization
文献标志码:
A
摘要:
偏微分方程的数值解法在数值分析中占有很重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题。在学习初等函数时,总是先画出它们的图形,因为图形能帮助了解函数的性质。而对于偏微分方程,画出它们的图形并不容易,尤其是没有解析解的偏微分方程,画图就显得更加不容易了。为了从偏微分方程的数学表达式中看出其所表达的图形、函数值与自变量之间的关系,通过MATLAB编程,数值求解了泊松方程,并将其结果可视化,给出了解析解与数值解的误差
Abstract:
The numerical solution of partial differential equations plays an important role in numerical analysis,the numerical calculation of many science technology includes the numerical solution problem of the partial differential equations. In the study of primary function, always draw their graphics,because the graphics can help to understand the nature of the function. But for the partial differential equa-tions,painting their graphics will not be easy,in particular for the partial differential equations that have no analytical solution,drawing is more difficult. In order to look out the relationship between graphics and function values and variables from the partial differential equa-tions,through MATLAB programming,soluted the Poisson equation with numerical method,and visualizated the results. Painted the error between analytical solutions and numerical solutions

相似文献/References:

[1]许江 张弓.基于图像特征方向的PDE去噪方法[J].计算机技术与发展,2009,(05):72.
 XU Jiang,ZHANG Gong.PDE Method Based on Image Feature Direction Applied in Image Smoothing[J].,2009,(12):72.
[2]汪超 唐勇奇.基于独立C代码的模糊控制器应用程序设计[J].计算机技术与发展,2009,(05):242.
 WANG Chao,TANG Yong-qi.Programmer of Fuzzy Controller Based on Stand - Alone C - Code[J].,2009,(12):242.
[3]邹洪侠 秦锋 程泽凯 王晓宇.二类分类器的ROC曲线生成算法[J].计算机技术与发展,2009,(06):109.
 ZOU Hong-xia,QIN Feng,CHENG Ze-kai,et al.Algorithm for Generating ROC Curve of Two - Classifier[J].,2009,(12):109.
[4]马银平 李建英 宣亮亮.基于粗糙表面模型的三维形貌恢复研究[J].计算机技术与发展,2009,(07):102.
 MA Yin-ping,LI Jian-ying,XUAN Liang-liang.Study on 3D Shape Recovery Based on Rough Surface Model[J].,2009,(12):102.
[5]张猛 唐波.毒气伤害范围的可视化绘制[J].计算机技术与发展,2009,(09):1.
 ZHANG Meng,TANG Bo.Visualization Drawing of Poisonous Gas Damage Region[J].,2009,(12):1.
[6]张伟 陈新龙 詹斌.基于DCT的图像水印算法研究与实现[J].计算机技术与发展,2009,(09):157.
 ZHANG Wei,CHEN Xin-long,ZHAN Bin.Research and Implementation of Blind Watermarking Algorithm of Images Based on DCT[J].,2009,(12):157.
[7]吕永林 字正华.基于VC与MATLAB的声目标识别系统设计[J].计算机技术与发展,2009,(09):207.
 LV Yong-lin,ZI Zheng-hua.Design of Acoustic Target Recognition System Based on VC and MATLAB[J].,2009,(12):207.
[8]张秀再.基于VC++和Matlab的数字信号内插处理系统[J].计算机技术与发展,2009,(01):109.
 ZHANG Xiu-zai.System of Data Signal Interpolation Processing Based on VC + + and Matlab[J].,2009,(12):109.
[9]余玥 胡宏智.基于改进遗传算法的物流配送路径求解[J].计算机技术与发展,2009,(03):52.
 YU Yue,HU Hong-zhi.Solving Logistics Distribution Routing Problem by An Improved Genetic Algorithm[J].,2009,(12):52.
[10]张琦 许勇.Matlab环境下素数筛选算法的分析及比较[J].计算机技术与发展,2009,(03):95.
 ZHANG Qi,XU Yong.Analysis and Comparison of Several Sieve Methods on Prime Number Searching with Matlab[J].,2009,(12):95.

更新日期/Last Update: 1900-01-01