[1]方凌江,粘永健,王迎春[].基于分类KLT的高光谱图像压缩[J].计算机技术与发展,2013,(11):82-85.
 FANG Ling-jiang[],NIAN Yong-jian[],WANG Ying-chun[].Hyperspectral Images Compression Based on Classified KLT[J].,2013,(11):82-85.
点击复制

基于分类KLT的高光谱图像压缩()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年11期
页码:
82-85
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Hyperspectral Images Compression Based on Classified KLT
文章编号:
1673-629X(2013)11-0082-04
作者:
方凌江1粘永健12王迎春[3]
[1]济南军区联勤部 指挥自动化工作站;[2]国防科技大学 电子科学与工程学院;[3]济南军区装备部 指挥自动化工作站
Author(s):
FANG Ling-jiang[1]NIAN Yong-jian[12]WANG Ying-chun[3]
关键词:
高光谱图像数据压缩地物分类
Keywords:
hyperspectral imagesdata compressionground classification
文献标志码:
A
摘要:
高光谱图像的有效压缩已经成为高光谱遥感领域研究的热点。提出了一种基于分类KLT( Karhunen-Loève Trans-form)的高光谱图像压缩算法。该算法利用光谱信息对高光谱图像进行地物分类,根据相邻波段的相关性对高光谱图像进行波段分组。在地物分类与波段分组的基础上,对每组的每一类地物数据分别进行 KL变换,利用 EBCOT ( Embedded Block Coding with Optimal Truncation)算法对所有主成分进行联合编码。实验结果表明,该算法能够取得优于JPEG2000以及DWT-JPEG2000的压缩性能,适合实现高光谱图像的有效压缩
Abstract:
Efficient compression of hyperspectral images has been the focus in the field of hyperspectral remote sensing. A new compres-sion algorithm of hyperspectral images based on classified-Karhunen-Loève Transform ( KLT) is proposed. Ground classification of hy-perspectral images is performed by using spectral information. Band grouping is carried out according to the correlation between adjacent two bands. Based on the ground classification and band grouping,KLT is performed on each ground class of hyperspectral images respec-tively in each group. EBCOT( Embedded Block Coding with Optimal Truncation) algorithm is used for the joint coding of all the princi-ple components. Experimental results show that the proposed algorithm can achieve better compression performance compared with those state-of-the-art compression algorithms such as JPEG2000 and DWT-JPEG2000,which is suitable for the efficient compression of hy-perspectral images

相似文献/References:

[1]宋世刚 粘永健 李纲.面向目标检测的高光谱图像压缩技术[J].计算机技术与发展,2009,(11):1.
 SONG Shi-gang,NIAN Yong-jian,LI Gang.Hyperspectral Image Compression Employing Target Detection[J].,2009,(11):1.
[2]祝君 林庆农 徐造林.实时历史数据库中压缩技术的并行化研究[J].计算机技术与发展,2010,(07):36.
 ZHU Jun,LIN Qing-nong,XU Zao-lin.Research on Parallel Compression Technology in Real-Time Historical Database[J].,2010,(11):36.
[3]马恋 何锫.基于神经网络的数据压缩研究[J].计算机技术与发展,2007,(02):12.
 MA Lian,HE Pei.Research on NN- Based Data Compression[J].,2007,(11):12.
[4]秦贞远 马素霞 齐林海.电能质量数据交换平台的关键问题研究[J].计算机技术与发展,2011,(04):206.
 QIN Zhen-yuan,MA Su-xia,QI Lin-hai.Design and Implementation of Data Exchange Platform for Power Quality[J].,2011,(11):206.
[5]郑翠芳.几种常用无损数据压缩算法研究[J].计算机技术与发展,2011,(09):73.
 ZHENG Cui-fang.Research of Several Common Lossless Data Compression Algorithms[J].,2011,(11):73.
[6]杨永军 徐江 许帅 舒逸.实时数据库有损压缩算法的研究[J].计算机技术与发展,2012,(09):5.
 YANG Yong-jun,XU Jiang,XU Shuai,et al.Research on Lossy Compression Algorithm in Real-time Database[J].,2012,(11):5.
[7]刘 赛,聂庆节,刘军,等.基于聚类的重复数据去冗算法的研究[J].计算机技术与发展,2018,28(02):125.[doi:10.3969/j.issn.1673-629X.2018.02.027]
 LIU Sai,NIE Qing-jie,LIU Jun,et al.Research on Deduplication Algorithm Based on K-medoids Clustering[J].,2018,28(11):125.[doi:10.3969/j.issn.1673-629X.2018.02.027]
[8]徐 辉,杨 敏.基于低秩矩阵恢复的高光谱图像去噪[J].计算机技术与发展,2022,32(10):46.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 008]
 XU Hui,YANG Min.Hyperspectral Image Denoising Based on Low Rank Matrix Restoration[J].,2022,32(11):46.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 008]
[9]姜 斌,叶 军.基于群稀疏正则化的高光谱图像去噪[J].计算机技术与发展,2023,33(12):171.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 024]
 JIANG Bin,YE Jun.Hyperspectral Image Denoising Based on Group Sparse Regularization[J].,2023,33(11):171.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 024]

更新日期/Last Update: 1900-01-01