[1]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220-223.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(10):220-223.
点击复制

基于二维压缩感知的双选信道估计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
220-223
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing
文章编号:
1673-629X(2013)10-0220-04
作者:
彭钰侯晓赟
南京邮电大学 信号处理与传输研究院
Author(s):
PENG YuHOU Xiao-yun
关键词:
信道估计压缩感知双选信道二维正则正交匹配追踪
Keywords:
channel estimationcompressive sensingdoubly selective channel2 dimension regularized orthogonal matching pursuit
文献标志码:
A
摘要:
高速移动下的无线宽带通信要经历时间和频率的双选择性衰落,为了使发送的数据经过衰落的信道后在接收端被正确地接收,必须要对信道状态信息进行估计。文中根据双选信道在时延-多普勒域的二维稀疏性,同时利用时域和多普勒域内的相关性,在OFDM系统中提出了基于二维压缩感知(2 Dimension Compressive Sensing,2D-CS)的双选信道估计。同时为了克服信道的双选特性对信道估计造成的不稳定性,设计了二维正则正交匹配追踪(2 Dimension Regularized Or-thogonal Matching Pursuit,2D-ROMP)算法进行信道估计。理论分析和仿真结果表明,在同等条件下,采用二维的信道估计方法比一维的信道估计方法性能提高很多,同时与现有的基于传统的时频二维的算法相比,基于2D-ROMP的信道估计复杂度更低,且系统性能更高,减少估计时延
Abstract:
High data rates and high mobility introduce time and frequency selectivity in wideband wireless communication. Need to esti-mate the channel state information so that the data through fading channel can be received correctly. Exploiting the sparsity and correlation of doubly selective wireless channel in both delay domain and Doppler domain,study the doubly selective channel estimation based on 2 Dimension Compressive Sensing (2D-CS). In order to overcome the instability of the channel estimation caused by the multipath delay spread and Doppler shift,the channel estimation based on 2 Dimension ROMP (2D-ROMP) algorithm is designed in this paper. Theoret-ical analysis and simulation shows that the 2D-ROMP has better performance but with fewer pilots than conventional 2 dimension delay domain and Doppler domain estimation,furthermore,2 dimension channel estimation has better estimation performance than 1 dimension channel estimation

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(10):145.
[2]张子杰 彭端 张欣 刘高星.基于信道估计的SC-FDMA自适应传输方案[J].计算机技术与发展,2012,(03):35.
 ZHANG Zi-jie,PENG Duan,ZHANG Xin,et al.An Adaptive Transmission Scheme of SC-FDMA Based on Channel Estimation[J].,2012,(10):35.
[3]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(10):12.
[4]张欣 彭端 张子杰 刘高星.基于LTE上行的改进LMMSE信道估计算法[J].计算机技术与发展,2012,(06):97.
 ZHANG Xin,PENG Duan,ZHANG Zi-jie,et al.An Improved LMMSE Channel Estimation Algorithm for LTE Uplink[J].,2012,(10):97.
[5]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(10):241.
[6]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[7]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(10):99.
[8]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(10):101.
[9]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(10):198.
[10]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(10):83.
[11]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(10):195.
[12]孙君,高杰.基于压缩感知的自适应导频信道估计[J].计算机技术与发展,2016,26(10):184.
 SUN Jun,GAO Jie. Adaptive Pilot Channel Estimation Based on Compressive Sensing[J].,2016,26(10):184.

更新日期/Last Update: 1900-01-01