[1]杨晶,成卫青,郭常忠.基于标准标签的用户兴趣模型研究[J].计算机技术与发展,2013,(10):208-211.
 YANG Jing[],CHENG Wei-qing[],GUO Chang-zhong[].Research on User Interest Model Based on Standard Tag[J].,2013,(10):208-211.
点击复制

基于标准标签的用户兴趣模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
208-211
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on User Interest Model Based on Standard Tag
文章编号:
1673-629X(2013)10-0208-04
作者:
杨晶1成卫青1郭常忠2
[1]南京邮电大学 计算机学院;[2]烟台大学 数学与信息科学学院
Author(s):
YANG Jing[1]CHENG Wei-qing[1]GUO Chang-zhong[2]
关键词:
个性化推荐用户兴趣模型向量空间模型标准标签
Keywords:
personalized recommendationuser interest modelvector space modelstandard tag
文献标志码:
A
摘要:
信息大爆炸的网络时代,个性化推荐是解决信息“超负载”的有效办法。用户兴趣模型是个性化推荐的核心,关系着整个推荐系统的推荐质量。标签一直被用于资源分类,在个性化推荐方面却很少使用。文中采取向量空间模型的建模方法,利用个性化标签描述用户兴趣,并提出一套简洁有效的标签标准化方法-基于属性共现率的标签标准化以及基于聚类的标签标准化方法对用户的自定义标签进行标准化。该模型能有效降低用户兴趣模型的向量维数,避免分析标签语义的复杂过程,且能够从用户的角度贴切地表达用户兴趣。实验结果表明该模型有助于提高个性化推荐的服务质量
Abstract:
Faced to the Internet age of information explosion,the personalized recommendation is an effective way to solve the“informa-tion overload”. User interest model as the core of personalized recommendation determines the quality of the recommendation system. Tags have been used for the classification of resources;however,they are seldom used in personalized recommendation. In this paper,vec-tor space model is used in modeling,where personalized tags are used to describe user interests. A set of simple and effective methods are proposed to standardize user's custom tags,including a standardization method based on attribute co-occurrence frequency and a stand-ardization method based on clustering. Thus,the vector dimension of the user interest model can be reduced effectively,avoiding complex tag semantic analysis,as well as being able to aptly express user's interests from their point of view. The experimental results show that the proposed user interest model can help to improve the quality of personalized recommendation

相似文献/References:

[1]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(10):69.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(10):182.
[3]汤亚玲 秦峰.Web行为下的正向关联规则挖掘研究[J].计算机技术与发展,2007,(08):40.
 TANG Ya-ling,QIN Feng.Research of Forward Association Rules Mining Under Web Behaviour[J].,2007,(10):40.
[4]卫琳.基于搜索结果的个性化推荐系统研究[J].计算机技术与发展,2007,(09):65.
 WEI Lin.A Study of Personalization Recommendation System Based on Search Result[J].,2007,(10):65.
[5]缪涵琴 孙涌.专利信息本体的设计及应用[J].计算机技术与发展,2007,(12):204.
 MIAO Han-qin,SUN Yong.The Application of Ontology in Patent Information Services System[J].,2007,(10):204.
[6]但微 才书训.电子商务中Web挖掘技术的应用探讨[J].计算机技术与发展,2006,(01):207.
 DAN Wei,CAI Shu-xun.Using Web Mining in Electronic Commerce[J].,2006,(10):207.
[7]费洪晓 穆珺 刘正.基于文本聚类和权重调整的用户兴趣建模算法[J].计算机技术与发展,2007,(02):128.
 FEI Hong-xiao,MU Jun,LIU Zheng.Study on User Profile Learning Algorithm Based on Document Clustering and Feature Weight Adjustment[J].,2007,(10):128.
[8]费洪晓 穆珺 巩艳玲 黎成.基于Agent的个性化信息过滤系统的设计与实现[J].计算机技术与发展,2006,(12):1.
 FEI Hong-xiao,MU Jun,GONG Yan-ling,et al.Design and Implementation of Agent- Based Personalized Information Filtering System[J].,2006,(10):1.
[9]王嫣然 陈梅 王翰虎 张鑫.一种基于内容过滤的科技文献推荐算法[J].计算机技术与发展,2011,(02):66.
 WANG Yan-ran,CHEN Mei,WANG Han-hu,et al.A Content-Based Filtering Algorithm for Scientific Literature Recommendation[J].,2011,(10):66.
[10]殷凤霞.社会网络中基于内容语义的新闻推荐方法研究[J].计算机技术与发展,2013,(10):253.
 YIN Feng-xia.Research on Method of News Recommendation Based on Content Semantic in Social Network[J].,2013,(10):253.

更新日期/Last Update: 1900-01-01