[1]牛永洁.具有全局指导的启发式蚁群聚类新算法[J].计算机技术与发展,2013,(09):74-77.
 NIU Yong-jie.New Algorithm of Heuristic Ant Colony Clustering with Global Guidance[J].,2013,(09):74-77.
点击复制

具有全局指导的启发式蚁群聚类新算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年09期
页码:
74-77
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
New Algorithm of Heuristic Ant Colony Clustering with Global Guidance
文章编号:
1673-629X(2013)09-0074-04
作者:
牛永洁
延安大学 计算中心
Author(s):
NIU Yong-jie
关键词:
蚁群聚类全局记忆启发信息查准率查全率
Keywords:
ant colony clusteringglobal memoryheuristic informationprecision raterecall rate
文献标志码:
A
摘要:
蚁群聚类LF算法是基于蚂蚁堆形成原理而产生的群体智能算法,存在收敛速度慢、易陷入局部最优等缺陷。为了提高LF算法的收敛速度,在算法中提供具有全局意义的记忆中心,算法运行初期,蚂蚁根据全局记忆中心的启发信息运行,随着算法的迭代,不断更新全局记忆中心。为了避免算法陷入局部最优,在全局记忆中心的指导下,每只蚂蚁向距离最小的点运动,而不是采用直接跳转的方法。新算法使用UCI数据集中的Iris和Wine验证,算法的查准率和查全率要优于其他算法
Abstract:
LF ant colony clustering algorithms is swarm intelligence algorithm which is based on the principle of ant heap formation,slow to converge and easy to fall into the local optimum. In order to improve the convergence speed of the LF algorithm,memory center of global significance is provided,when the algorithm runs early,the ants run according to the heuristic information from global memory center,with the iteration of the algorithm,constantly update the global memory center. In order to avoid the algorithm into a local opti-mum,under the guidance of the global memory center,each ant moves to the minimum distance point,rather than directly jumps. The new algorithm uses UCI dataset Iris and Wine verification,the algorithm precision rate and the recall rate is better than the other algorithms

相似文献/References:

[1]陈寿文 李明东.Matlab在蚁群聚类算法数据源产生中的应用[J].计算机技术与发展,2009,(07):216.
 CHEN Shou-wen,LI Ming-dong.Application in Data Source's Generation of Ant Colony Clustering Algorithm with Matlab[J].,2009,(09):216.
[2]李玲娟 李冰.一种基于特征加权的蚁群聚类新算法[J].计算机技术与发展,2010,(08):67.
 LI Ling-juan,LI Bing.A New Ant Colony Clustering Algorithm Based on Feature Weight[J].,2010,(09):67.
[3]高冶,陈绮.基于蚁群聚类的蛋白质二级结构特征研究[J].计算机技术与发展,2013,(06):191.
 GAO Ye,CHEN Qi.Research on Features of Protein Secondary Structure Based on Ant Colony Clustering[J].,2013,(09):191.
[4]姜参,王大伟.一种改进蚁群聚类的入侵检测方法[J].计算机技术与发展,2013,(12):139.
 JIANG Shen,WANG Da-wei.An Improved Ant Colony Clustering Method for Intrusion Detection[J].,2013,(09):139.

更新日期/Last Update: 1900-01-01