[1]汤鹏志,何涛,李彪.离散对数问题攻击算法的改进[J].计算机技术与发展,2013,(05):127-130.
 TANG Peng-zhi,HE Tao,LI Biao.Improved Attack Algorithm for Discrete Logarithm Problem[J].,2013,(05):127-130.
点击复制

离散对数问题攻击算法的改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
127-130
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Improved Attack Algorithm for Discrete Logarithm Problem
文章编号:
1673-629X(2013)05-0127-04
作者:
汤鹏志何涛李彪
华东交通大学 基础科学学院
Author(s):
TANG Peng-zhiHE TaoLI Biao
关键词:
离散对数小步-大步攻击算法奇偶判断
Keywords:
discrete logarithmbaby-step-giant-step attack algorithmparity judgment
文献标志码:
A
摘要:
在求解离散对数问题上有袋鼠攻击、生日攻击、小步-大步攻击、指数积分攻击等多种方法,而小步-大步攻击算法是比较通用且高效的.为了提高攻击算法的速度,改善算法的效率,提出的改进算法牺牲了适当的存储空间,但在运算之前通过奇偶判断筛选过程减少了判断的次数甚至有数量级的减少.性能分析表明,改进的算法在性能上优于原算法.并且预处理过程中产生的数据可以重复利用来求解同一群下不同生成元的离散对数问题,这又进一步减少了算法的运算复杂度
Abstract:
There are kangaroo attack,birthday attack,baby-step-giant-step attack,exponential integral attack and other methods in sol-ving the discrete logarithm problem. The baby-step-giant-step attack algorithm is more versatile and efficient. In order to improve the speed of the attack algorithm and the efficiency of the algorithm,the algorithm proposed is improved at the expense of the appropriate storage space. By the parity operator before the judge selection process reduce the number of judgment,even the reduction of the magni-tude. The performance analysis shows that the improved algorithm outperforms the original algorithm. And the data generated in the pre-treatment process can be reused to solve the problem of the generator under the same group of discrete logarithm. This further reduces the computational complexity of the algorithm

相似文献/References:

[1]王平水.失败-停止签名方案研究[J].计算机技术与发展,2008,(06):138.
 WANG Ping-shui.Research on Fail- Stop Signature Schemes[J].,2008,(05):138.
[2]王平水.基于独立集问题的零知识证明研究[J].计算机技术与发展,2007,(09):55.
 WANG Ping-shui.Study on Zero- Knowledge Proof Based on Independent Set Problem[J].,2007,(05):55.
[3]石润华 仲红.基于椭圆曲线离散对数的组签名方案[J].计算机技术与发展,2007,(11):153.
 SHI Run-hua,ZHONG Hong.Group Signature Schemes Based on Elliptic Curve Discrete Logarithm[J].,2007,(05):153.
[4]张骏 张耀鸿 陈力群.类群签名技术在财务管理系统上的运用研究[J].计算机技术与发展,2007,(01):177.
 ZHANG Jun,ZHANG Yao-hong,CHEN Li-qun.Application Research of Finance MIS with a Similar Group Signature[J].,2007,(05):177.
[5]于雪燕 胡金初 柴春轶.椭圆曲线密码体制及其参数生成的研究[J].计算机技术与发展,2006,(11):160.
 YU Xue-yan. HU Jin-chu,CHAI Chun-yi.Research. on Elliptic Curves Cryptosystems and References Generating[J].,2006,(05):160.
[6]杨迎辉 任俊峰.基于离散对数上的多级多代理签名方案[J].计算机技术与发展,2010,(12):181.
 YANG Ying-hui,REN Jun-feng.Multi-Level Multi-Proxy Signature Scheme Based on Discrete Logarithms[J].,2010,(05):181.
[7]王红珍 李竹林.素域上安全椭圆曲线的选取[J].计算机技术与发展,2012,(07):140.
 WANG Hong-zhen,LI Zhu-lin.Selection of Security Elliptic Curve over Prime Fields[J].,2012,(05):140.
[8]王红珍 李竹林.ECC算法在软件保护中的应用及安全性分析[J].计算机技术与发展,2012,(08):155.
 WANG Hong-zhen,LI Zhu-lin.Application and Security Analysis of ECC Algorithm in Software Protection[J].,2012,(05):155.
[9]于丹,缪祥华.一种新的基于离散对数的弱盲签名方案[J].计算机技术与发展,2013,(10):123.
 YU Dan,MIAO Xiang-hua.A New Weak Blind Signature Scheme Based on Discrete Logarithms[J].,2013,(05):123.

更新日期/Last Update: 1900-01-01