[1]崔锡鑫,苏伟,刘颖.基于熵的流量分析和异常检测技术研究与实现[J].计算机技术与发展,2013,(05):120-123.
 CUI Xi-xin,SU Wei,LIU Ying.Research and Implementation of Traffic Analysis and Anomaly Detection Technology Based on Entropy[J].,2013,(05):120-123.
点击复制

基于熵的流量分析和异常检测技术研究与实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
120-123
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Research and Implementation of Traffic Analysis and Anomaly Detection Technology Based on Entropy
文章编号:
1673-629X(2013)05-0120-04
作者:
崔锡鑫苏伟刘颖
北京交通大学 电子信息工程学院
Author(s):
CUI Xi-xinSU WeiLIU Ying
关键词:
异常检测联合熵
Keywords:
anomaly detectionentropyjoint-entropy
文献标志码:
A
摘要:
随着互联网的飞速发展,网络安全问题受到越来越多的关注.作为一种重要的网络监管控制手段,流量异常检测技术也越来越受到人们的重视.目前流量异常检测方法有很多,基于熵的流量异常检测是近几年研究较多的一种方法.文中在基于熵的流量异常检测的基础上,先对两种算法进行编程实现,即基于信息熵的流量异常检测算法和基于联合熵的流量异常检测算法,而后对这两种算法进行实验测试与分析比较,结果表明基于联合熵的流量异常检测可以更为有效地检测出异常.同时根据分析结果,提出一种有效的检测流量异常的分析思路
Abstract:
With the rapid development of Internet,the network security receives more and more attention. As one of the important means of network monitoring and control,the traffic anomaly detection technology has been realizing more important by people. Now there are many ways to detect the anomaly of the traffic,and the anomaly detection technology based on entropy is an important means in recent years. First the anomaly detection technology based on information entropy and the anomaly detection technology based on joint-entropy are programming realized in this paper,then make an experimental test and an analysis according to the two ways. It shows that the anom-aly detection technology based on joint-entropy is more effective,and then a valid analysis of ideas to detect the anomaly of traffic is pro-posed

相似文献/References:

[1]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(05):148.
[2]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(05):168.
[3]汪慧敏.基于改进负选择算法的异常检测[J].计算机技术与发展,2009,(08):41.
 WANG Hui-min.Anomaly Detection Using Modified Negative Selection Algorithm[J].,2009,(05):41.
[4]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(05):159.
[5]陈丹伟 黄秀丽 任勋益.基于人工神经网络入侵检测模型的探讨[J].计算机技术与发展,2009,(12):143.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.An Approach to IDS Model Based on Artificial Neuron Network[J].,2009,(05):143.
[6]柏海滨 李俊.基于支持向量机的入侵检测系统的研究[J].计算机技术与发展,2008,(04):137.
 BAI Hai-bin,LI Jun.Research of Intrusion Detection System Based on Support Vector Machine[J].,2008,(05):137.
[7]赵凯 王爱平 吴刚.非高斯噪声下Kalman滤波熵理论算法研究[J].计算机技术与发展,2008,(06):40.
 ZHAO Kai,WANG Ai-ping,WU Gang.Kalman Filter Algorithm under Non- Guassian Noises Using Entropy Theory[J].,2008,(05):40.
[8]吴刚 王爱平 赵凯.非高斯噪声下输出残差或状态估计误差的熵研究[J].计算机技术与发展,2008,(06):54.
 WU Gang,WANG Ai-ping,ZHAO Kai.Study on Entropy of Output Residuals or State Estimation Error for Non- Gaussian Noise[J].,2008,(05):54.
[9]卢桂馥 刘金飞 王勇 窦易文.基于微粒群算法和脉冲耦合神经网络的图像分割算法[J].计算机技术与发展,2008,(07):90.
 LU Gui-fu,LIU Jin-fei,WANG Yong,et al.An Image Segmentation Method Based on PSO Algorithm and PCNN[J].,2008,(05):90.
[10]曹润聪 曹立明.Linux随机数生成器的原理及缺陷[J].计算机技术与发展,2007,(10):109.
 CAO Run-eong,CAO Li-ming.Theory and Flaw of Linux Random Number Generator[J].,2007,(05):109.

更新日期/Last Update: 1900-01-01